深度学习第二周 tensorflow实现彩色图片识别识别

2023-10-29 07:20

本文主要是介绍深度学习第二周 tensorflow实现彩色图片识别识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 内部限免文章(版权归 K同学啊 所有)
  • ** 参考文章地址:🔗深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天 **
  • 🍖 作者:K同学啊

    文章目录

    • 一、本周学习内容:
      • 1、卷积层
      • 2、池化层
    • 二、前言
    • 三、电脑环境
    • 四、前期准备
      • 1、导入相关依赖项
      • 2、设置GPU(我下载的tensorflow-gpu 默认使用GPU)
      • 3、加载数据集和展示
        • (1)、数据集加载
        • (2)、数据展示
    • 五、数据预处理
    • 六、搭建CNN网络
    • 七、绘制损失函数图像和准确度图像

一、本周学习内容:

1、卷积层

卷积层的作用为提取输入数据中的特征
假如输入图片为33,卷积核为22,不填充,步长为1,卷积效果如下
在这里插入图片描述
从左到右从上到下一次依次相乘再求和
如:19=0x0+1x1+3x2+4x3
25=1x0+2x1+4x2+5x3
加入填充层,输入图片为33,卷积核为22,填充宽高都为1,步长为1,卷积效果如下
在这里插入图片描述
在加入填充层的情况下把步长改为2,卷积效果如下:
在这里插入图片描述
注意如果当输入维度进行卷积移动时,余下的不够进行再次计算,则余下那列(或行)被舍弃,当然有时为了计算快速,则跳过一列(或一行)进行计算,如上图中,进行列移动时,就跳过了一行
卷积后宽高的计算公式
在这里插入图片描述
如:上面三个的输出维度计算分别为:
动图1:(3-2+2x0)÷1+1=2
动图2:(3-2+2x1)÷1+1=4
动图3:(3-2+2x1)÷2+1=2.5(保留整数)=2
注意:宽高要分别计算。

2、池化层

池化层对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度;另一方面进行特征压缩,提取主要特征,增加平移不变性,减少过拟合风险。但其实池化更多程度上是一种计算性能的一个妥协,强硬地压缩特征的同时也损失了一部分信息,所以现在的网络比较少用池化层或者使用优化后的如SoftPool。
池化层有最大池化层和平均池化层,选择一个区域内的最大值或平均值。
如输入图片为3x3,选择的池化从尺寸为2x2的
在这里插入图片描述

二、前言

CIFAR-10数据集由6万张32*32的彩色图片组成,一共有10个类别。每个类别6000张图片。其中有5万张训练图片及1万张测试图片。它的收集者是:Alex Krizhevsky, Vinod Nair, Geoffrey Hinton。
类别包括:[ ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, 'deer ’ , ’ dog ', ‘frog’, 'horse ', ‘ship’, ‘truck’]

三、电脑环境

电脑系统:Windows 10
语言环境:Python 3.8.8
编译器:Pycharm 2021.1.3
深度学习环境:TensorFlow 2.8.0,keras 2.8.0
显卡及显存:RTX 3070 8G

四、前期准备

1、导入相关依赖项

from keras.datasets import cifar10
from keras.models import *
from keras.layers import *
from tensorflow import keras
import matplotlib.pyplot as plt

2、设置GPU(我下载的tensorflow-gpu 默认使用GPU)

只使用GPU

if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

使用cpu和gpu
os.environ[“CUDA_VISIBLE_DEVICES”] = “-1”

3、加载数据集和展示

(1)、数据集加载

# 数据加载
(x_train,y_train),(x_test,y_test) = cifar10.load_data()

这里的数据集加载方式和上篇文章mnist有些区别
运行上面命令后 会在.C:\Users\用户名(此处填你自己的)\.keras\datasets中有这么一个压缩包
在这里插入图片描述
解压后里面就是相关数据集和html文件介绍
如果直接加载数据集报错,数据集下载失败的,参考第一周文章

(2)、数据展示

直接使用第一周文章代码进行展示
分别展示训练集和测试集各自的前十张图片

# 图片展示
plt.figure(figsize=(20, 5))  # 创建一个画布,画布大小为宽20、高5(单位为英寸inch)
for i, imgs in enumerate(x_train[:10]):# 将整个画布分成2行10列,绘制第i+1个子图。plt.subplot(2, 10, i+1)plt.imshow(imgs, cmap=plt.cm.binary)plt.axis('off')
for i, imgs in enumerate(x_test[:10]):# 将整个画布分成2行10列,绘制第i+11个子图。plt.subplot(2, 10, i+11)plt.imshow(imgs, cmap=plt.cm.binary)plt.axis('off')
plt.show()  #使用pycharm的需要加入这行代码才能将图像显示出来

在这里插入图片描述

五、数据预处理

我们需要将验证集和测数据数据增加一个维度,并将其像素从0-255划分到0-1之间减少计算量,我们还需要将标签集进行热编码处理

# 数据预处理
x_train,x_test=x_train/255.,x_test/255.
# 标签热编码
y_train,y_test = keras.utils.to_categorical(y_train),keras.utils.to_categorical(y_test)

六、搭建CNN网络

相关网络模型和参数与第一周

# 网络模型
model = Sequential([Conv2D(filters=32,kernel_size=3,activation='relu',input_shape=(28,28,1)),MaxPool2D((2,2)),Conv2D(filters=64,kernel_size=3,activation='relu'),MaxPool2D((2,2)),Flatten(),Dense(64,activation='relu'),Dense(10,activation='softmax')  # 输出为10类别
])
# 设置优化器相关
model.compile(optimizer=keras.optimizers.SGD(learning_rate=0.01),loss=keras.losses.binary_crossentropy,metrics=['acc'])
evaluate = model.evaluate(x_test,y_test)
print(evaluate)
Epoch 1/10
1667/1667 [==============================] - 22s 3ms/step - loss: 0.3390 - acc: 0.1615 - val_loss: 0.3214 - val_acc: 0.1835
Epoch 2/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.3158 - acc: 0.2204 - val_loss: 0.3093 - val_acc: 0.2504
Epoch 3/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.3020 - acc: 0.2741 - val_loss: 0.2947 - val_acc: 0.2989
Epoch 4/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2918 - acc: 0.3025 - val_loss: 0.2878 - val_acc: 0.3235
Epoch 5/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2858 - acc: 0.3235 - val_loss: 0.2819 - val_acc: 0.3452
Epoch 6/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2796 - acc: 0.3437 - val_loss: 0.2754 - val_acc: 0.3592
Epoch 7/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2732 - acc: 0.3641 - val_loss: 0.2696 - val_acc: 0.3739
Epoch 8/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2667 - acc: 0.3831 - val_loss: 0.2630 - val_acc: 0.3902
Epoch 9/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2604 - acc: 0.4003 - val_loss: 0.2573 - val_acc: 0.4097
Epoch 10/10
1667/1667 [==============================] - 5s 3ms/step - loss: 0.2549 - acc: 0.4123 - val_loss: 0.2521 - val_acc: 0.4195
313/313 [==============================] - 1s 2ms/step - loss: 0.2521 - acc: 0.4195
[0.25214818120002747, 0.4194999933242798]

七、绘制损失函数图像和准确度图像

绘制代码与第一周文章相同

# 画准确度图
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(10)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
以上就是我本周的学习内容
在这里插入图片描述

这篇关于深度学习第二周 tensorflow实现彩色图片识别识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299128

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到