预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)

本文主要是介绍预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第四十八篇 预测-修正法

预测-校正方法是使用先前几个已知点的信息来计算下一个点,如下图所示。
这种方法的一个缺点是,他们需要一些已知信息,可能需要一步法来生成一些点才能开始,详情可见常微分方程的一步法求解。而这些方法的优点在于,为了预测下一个点,能够有效地利用现有的信息。这与四阶龙格-库塔法相反,例如,在每一步中,需要计算四个函数,预测-修正法将不会这么麻烦。
预测-校正方法利用两个公式;根据现有数据以估计下一个点的预测公式,以及改进此估计的校正公式。
在这里插入图片描述
可以反复应用校正公式,直到满足某一收敛准则;但是,本篇中描述的任何方法都没有实现此选项。
预测公式通过在y ‘- x曲线下使用xi, xi−1,xi−2等样本点积分来估计yi+1的新值。任何不需要对yi+1进行先验估计的数值积分公式都适合作为预测器使用。
修正公式改进了预测值yi+1,再次在y ‘-x曲线下积分,但这次使用了样本点xi+1, xi, xi−1等。校正公式能够在xi+1处取样,因为从预测阶段可以得到y’i+1的值。任何需要对y’i+1进行先验估计的数值积分公式都适合用作校正器。
之前描述的修正欧拉方法是一种预测-校正器。给出一个标准形式的一阶微分方程,y’ = f(x, y), y(x0) = y0,该方法从Euler方法开始,这是一个使用矩形规则的预测器
在这里插入图片描述
接下来是一个使用梯形法则的校正器
在这里插入图片描述
注意,预测器不需要预估y’i+1,而校正器需要。
然而,最著名的预测-校正方法使用的公式在算法的两个部分具有相同的精度。如上所示,这是一种简便的方法可以根据预测项和修正项之间的差异来估计修正项的误差。

米尔恩-辛普森方法

这种方法使用米尔恩的公式作为预测器,用辛普森法则作为校正器。该方法是四阶的,即预测器和校正器的主要误差项都包含h5,并且需要4个初始值y来开始。注意,与预测量相比,与校正量公式相关的误差项较小,这是意料之中的,因为预测量涉及的外推过程不那么精确。
给出一个具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1和y(xi) = yi的一阶微分方程y’ = f(x, y),该方法从米尔恩预测器开始
在这里插入图片描述
接着是辛普森的校正者
在这里插入图片描述
米尔恩预测器使用下图所示积分的三个样本点,在xi−3和xi+1之间对y’- x曲线进行积分。
在这里插入图片描述

计算实例

已知y ’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用米尔恩-辛普森预测-校正方法估计y(0.2)
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器。
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4945) = 3.0689,并应用校正器。
在这里插入图片描述
这种情况下精确到小数点后四位的的精确解是y(0.2) = 1.4977。
使用米尔恩的方法,或者任何使用辛普森法则作为校正器的方法的一个不利是,在计算的一个阶段产生的误差随后可能会增大。由于这个原因,其他的四阶方法,比如下面描述的方法,往往是更受欢迎的。

Adams-Bashforth-Moulton方法

一种更稳定的四阶方法是基于Adams- bashforth预测器和Adams Moulton校正器,在这种方法中误差不会快速增长。
给定一个一阶微分方程,y’ = f(x, y)具有四个初始条件y(xi−3)= yi−3,y(xi−2)= yi−2,y(xi−1)= yi−1,y(xi) = yi = yi,该方法从Adams-Bashforth的预测器开始
在这里插入图片描述
接下来是亚当斯-莫尔顿的校正器
在这里插入图片描述
adam - bashforth - moulton方法有比Milne Simpson更大的误差项,尽管主要的误差项仍然表明校正器比预测器更准确。
稳定性的取得,要以一些额外的工作为代价,因为这两个公式需要四个样本点,而不是Milne-Simpson方法中的三个。如下图所示,Adams-Bashforth Predictor使用4个样本点在y’ -x曲线下xi和xi+1的界限之间进行积分。亚当斯-莫尔顿校正器是类似的,但样本点向右移动了一个。
在这里插入图片描述

计算实例

已知y’ = 2x2 + 2y,有初始条件
在这里插入图片描述
使用Adams-Bashforth-Moulton预测-校正器方法估计y(0.2)。
给出了步长h = 0.2的四个初始条件。为了便于手算,可以用计数器制作一个初始条件表格,计算右侧导数函数f(x, y)在每一点的值。
在这里插入图片描述
首先应用预测器公式
在这里插入图片描述
这使得在xi+1 = 0.2处的导数可以预测为fi+1(0.2, 1.4941) = 3.0682,并应用校正器公式。
在这里插入图片描述
这种情况下精确到小数点后四位的精确解是y(0.2) = 1.4977。

程序如下

#线性常微分方程的theta法
import numpy as np
itype=2;nsteps=5;h=-0.05
x=np.zeros((5))
y=np.zeros((5))
x[0:4]=(1.00,0.95,0.90,0.85);y[0:4]=(3.61623,2.99272,2.55325,2.22755)
def f73(x,y):f73=x*y**2+2.0*x**2return f73 
if itype==1:print('**Milne-Simpson 4阶P-C法**')print('x          y    Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[0]+4.0*h/3.0*(2.0*f73(x[1],y[1])-f73(x[2],y[2])+2.0*f73(x[3],y[3]))y[4]=y[2]+h/3.0*(f73(x[2],y[2])+4.0*f73(x[3],y[3])+f73(x[4],y1))e=-(y[4]-y4)/29print(x[4],y[4],e)y[0:4]=y[1:5];x[0:4]=x[1:5]
elif itype==2:print('**Adams-Bashforth-Moulton4阶P-C法**')print('    x           y          Error')for i in range(1,5):print('{:9.5e}'.format(x[i-1]),end='  ')print('{:9.5e}'.format(y[i-1]))for j in range(0,nsteps+1):x[4]=x[3]+hy4=y[3]+h/24.0*(-9.0*f73(x[0],y[0])+37.0*f73(x[1],y[1])-59.0*f73(x[2],y[2])+55.0*f73(x[3],y[3]))y[4]=y[3]+h/24.0*(f73(x[1],y[1])-5.0*f73(x[2],y[2])+19.0*f73(x[3],y[3])+9.0*f73(x[4],y4))e=-(y[4]-y4)/14print('{:9.5e}'.format(x[4]),end='  ')print('{:9.5e}'.format(y[4]),end='  ')print('{:9.5e}'.format(e))y[0:4]=y[1:5];x[0:4]=x[1:5]

终端输出结果如下
在这里插入图片描述

这篇关于预测-修正法(Milne-Simpson和Adams-Bashforth-Moulton)解常微分方程(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/298542

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数