RSA:基于小加密指数的攻击方式与思维技巧

2023-10-29 02:15

本文主要是介绍RSA:基于小加密指数的攻击方式与思维技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

目录

目录

零、前言

一、小加密指数爆破

[FSCTF]RSA签到

思路:

二、基于小加密指数的有限域开根

[NCTF 2019]easyRSA

思路:

三、基于小加密指数的CRT

[0CTF 2016] rsa

思路:


零、前言

    最近,发现自己做题思路比较混乱。总的来说,就是在各种方法之间很难适配到对应的题目。所以,写下这篇博客来记录这些区别。特别说明的是,这篇文章更偏向于解题,而不是讲解原理。考虑到两个点,在写下这篇博客时本人其实也才学习了近1个月的密码学,数学知识严重匮乏,不敢乱教与解析原理。其次,备战省赛在即没有充分多的时间让我去了解学习深层次的原理。所以这里只能够给出使用条件,也就是应用层面上的区分。

    此外特别声明,该篇博客更多的偏向于个人学习使用,其次是帮助大家应用。再者也欢迎各位指出错误,与提出问题。本人会在能力范围内尽可能作答。

一、小加密指数爆破

    小加密指数爆破是最为简单的求解方式。几乎遇到小加密指数都可以尝试一下。因为它使用条件最为简单:加密指数小需要注意的是,又是时候我需要分析数据特征。例如分析出flag比较短,即密文c很小时。我们可以优先直接开e次方。这一技巧出现于FSCTF中,这能帮助我们剔除混淆视听的提示--干扰信息。

[FSCTF]RSA签到

from Crypto.Util.number import *
from secret import flag
m = bytes_to_long(flag)
assert m.bit_length()<150
p = getPrime(512)
q = getPrime(512)
n = p*q
e = 3
c = pow(m, e, n)
kbits = 103
m = (m >> kbits) << kbits
Mod = getPrime(2048)
hint1 = (2019-2023*m) % Mod
hint2 = pow(2, 2023, Mod)
print('n =',n)
print('c =',c)
print('hint1 =',hint1)
print('hint2 =',hint2)
'''
n = 113369575322962228640839640796005129142256499725384495463316595604047079557930666699058024217561098997292782305151595366764483672240871690818579470888054811186902762990032505953330034837625667158114251720321766235335996441613828302393569643827293040591156144187232255906107532680524431761932215860898533224303
c = 42336544435252811021843650684098817755849747192874682997240960601474927692351510022965782272751339319782351146077580929125
hint1 = 23620186624579054670890922956929031966199853422018331906359817627553015939570302421768667351617160816651880338639432052134891008193969801696035505565684982786461527274477933881508678074157199742425764746919878452990468268098540220237611917321213668069666526658025737487539455262610713002399515462380573732082344497124344090365729168706760425585735014513373401622860196569544933971210142724734536588173957576667830667503151362930889494877201597267000737408071228466811160470759093928003064486766171850080985758351203536462206720715743059101285822169971058423075796415932349942113371706910521251120400151508125606778268
hint2 = 963121833542317369601573845406471251262548645428284526828835768327851746644612875378048462019053502788803516653832734212104068969204751285764221918179043624419894139984279754512017898273159626328827668380262481220865017731267802600915375183179264380651165421367773563947903391466768557089792263481734108493385146063258300495764165365295546337808852673629710735621386935094923561594142327134318905856137785813985574356271679918694447015294481691849341917432346559501502683303082591585074576786963085039546446281095048723669230856548339087909922753762884060607659880382812905450025751549153093939827557015748608
'''

思路:

通过肉眼观察,我们也能发现 密文(c) << 模数(n)

import gmpy2
from Crypto.Util.number import *n = 113369575322962228640839640796005129142256499725384495463316595604047079557930666699058024217561098997292782305151595366764483672240871690818579470888054811186902762990032505953330034837625667158114251720321766235335996441613828302393569643827293040591156144187232255906107532680524431761932215860898533224303
c = 42336544435252811021843650684098817755849747192874682997240960601474927692351510022965782272751339319782351146077580929125
'''
print(n.bit_length())
print(c.bit_length())
n.bit_length() = 1024
c.bit_length() = 405
'''if (gmpy2.iroot(m, 3)[1]):print(gmpy2.iroot(m, 3)[0]) # m = 34852863801144743432974618956978703253885m = 34852863801144743432974618956978703253885
print(long_to_bytes(m)) # flag{sign_1n_RSA}

二、基于小加密指数的有限域开根

    实际上,有限域上的开根并不需要有小加密指数的限制。指数当指数较低的时候运算速度会快一点

    有限域上的开根条件为:e | phi,且 e  | 任意因子的欧拉函数。

[NCTF 2019]easyRSA

from flag import flage = 0x1337
p = 199138677823743837339927520157607820029746574557746549094921488292877226509198315016018919385259781238148402833316033634968163276198999279327827901879426429664674358844084491830543271625147280950273934405879341438429171453002453838897458102128836690385604150324972907981960626767679153125735677417397078196059
q = 112213695905472142415221444515326532320352429478341683352811183503269676555434601229013679319423878238944956830244386653674413411658696751173844443394608246716053086226910581400528167848306119179879115809778793093611381764939789057524575349501163689452810148280625226541609383166347879832134495444706697124741
n = p * qassert(flag.startswith('NCTF'))
m = int.from_bytes(flag.encode(), 'big')
assert(m.bit_length() > 1337)c = pow(m, e, n)
print(c)
# 10562302690541901187975815594605242014385201583329309191736952454310803387032252007244962585846519762051885640856082157060593829013572592812958261432327975138581784360302599265408134332094134880789013207382277849503344042487389850373487656200657856862096900860792273206447552132458430989534820256156021128891296387414689693952047302604774923411425863612316726417214819110981605912408620996068520823370069362751149060142640529571400977787330956486849449005402750224992048562898004309319577192693315658275912449198365737965570035264841782399978307388920681068646219895287752359564029778568376881425070363592696751183359

思路:

首先我们能够看到 e = 0x1337 < 0x10001,算是比较小的一个加密指数。因此我们考虑一些基于小加密指数的攻击。但是因为这里 e = 0x1337 虽然算小,但是对于开方运算来说还是比较大的。因此我们不打算尝试小加密指数爆破。

因此我们似乎只能分析其他攻击路径。那么我开始尝试有限域开根(可以思考一下,为什么后续攻击也可以不在考虑范围内,这样更真实的还原了做题的情形)。

所以我们先分析是否满足我们的使用条件。如果直接满足就是脚本题了。否则就需要一些处理操作。

e = 0x1337
p = 199138677823743837339927520157607820029746574557746549094921488292877226509198315016018919385259781238148402833316033634968163276198999279327827901879426429664674358844084491830543271625147280950273934405879341438429171453002453838897458102128836690385604150324972907981960626767679153125735677417397078196059
q = 112213695905472142415221444515326532320352429478341683352811183503269676555434601229013679319423878238944956830244386653674413411658696751173844443394608246716053086226910581400528167848306119179879115809778793093611381764939789057524575349501163689452810148280625226541609383166347879832134495444706697124741
n = p * qprint((p - 1)*(q - 1) % e) # 0
print((p - 1) % e)         # 0
print((q - 1) % e)         # 0

通过测试程序,我们可以确定可以使用有限域开根。因此有以下脚本。

from gmpy2 import *
from Crypto.Util.number import *
import random
import mathdef onemod(e, q):p = random.randint(1, q-1)while(powmod(p, (q-1)//e, q) == 1):  # (r,s)=1p = random.randint(1, q)return pdef AMM_rth(o, r, q):  # r|(q-1assert((q-1) % r == 0)p = onemod(r, q)t = 0s = q-1while(s % r == 0):s = s//rt += 1k = 1while((s*k+1) % r != 0):k += 1alp = (s*k+1)//ra = powmod(p, r**(t-1)*s, q)b = powmod(o, r*a-1, q)c = powmod(p, s, q)h = 1for i in range(1, t-1):d = powmod(int(b), r**(t-1-i), q)if d == 1:j = 0else:j = (-math.log(d, a)) % rb = (b*(c**(r*j))) % qh = (h*c**j) % qc = (c*r) % qresult = (powmod(o, alp, q)*h)return resultdef ALL_Solution(m, q, rt, cq, e):mp = []for pr in rt:r = (pr*m) % q# assert(pow(r, e, q) == cq)mp.append(r)return mpdef calc(mp, mq, e, p, q):i = 1j = 1t1 = invert(q, p)t2 = invert(p, q)for mp1 in mp:for mq1 in mq:j += 1if j % 1000000 == 0:print(j)ans = (mp1*t1*q+mq1*t2*p) % (p*q)if check(ans):returnreturndef check(m):try:a = long_to_bytes(m).decode('utf-8')if 'NCTF' in a:print(a)return Trueelse:return Falseexcept:return Falsedef ALL_ROOT2(r, q):  # use function set() and .add() ensure that the generated elements are not repeatedli = set()while(len(li) < r):p = powmod(random.randint(1, q-1), (q-1)//r, q)li.add(p)return liif __name__ == '__main__':c = 10562302690541901187975815594605242014385201583329309191736952454310803387032252007244962585846519762051885640856082157060593829013572592812958261432327975138581784360302599265408134332094134880789013207382277849503344042487389850373487656200657856862096900860792273206447552132458430989534820256156021128891296387414689693952047302604774923411425863612316726417214819110981605912408620996068520823370069362751149060142640529571400977787330956486849449005402750224992048562898004309319577192693315658275912449198365737965570035264841782399978307388920681068646219895287752359564029778568376881425070363592696751183359p = 199138677823743837339927520157607820029746574557746549094921488292877226509198315016018919385259781238148402833316033634968163276198999279327827901879426429664674358844084491830543271625147280950273934405879341438429171453002453838897458102128836690385604150324972907981960626767679153125735677417397078196059q = 112213695905472142415221444515326532320352429478341683352811183503269676555434601229013679319423878238944956830244386653674413411658696751173844443394608246716053086226910581400528167848306119179879115809778793093611381764939789057524575349501163689452810148280625226541609383166347879832134495444706697124741e = 0x1337cp = c % pcq = c % qmp = AMM_rth(cp, e, p)mq = AMM_rth(cq, e, q)rt1 = ALL_ROOT2(e, p)rt2 = ALL_ROOT2(e, q)amp = ALL_Solution(mp, p, rt1, cp, e)amq = ALL_Solution(mq, q, rt2, cq, e)calc(amp, amq, e, p, q)

三、基于小加密指数的CRT

    基于小加密指数的CRT,基本有以下特征。e的大小就是方程组的数目

[0CTF 2016] rsa

思路:

    下载附件,我们可以获取得到两个文件。其中pem可以使用openssl指令获取里面的内容。当然也可以使用其他方式例如:

from Crypto.PublicKey import RSA
f = open("public.pem")
data = f.read()
s = RSA.importKey(data)
print(s.n)
print(s.e)n = 23292710978670380403641273270002884747060006568046290011918413375473934024039715180540887338067
e = 3
f.close()f = open("D:/Desktop/enter/flag.enc", 'rb')
data = f.read()
print(bytes_to_long(data))
c = 2485360255306619684345131431867350432205477625621366642887752720125176463993839766742234027524

    读取完文件后,我们已知的消息有(n, e, c), 其中我们需要求解m,那么我需要知道因子才能获取得到d,进而获取得到m。

print(n.bit_length())

#314

    看到n的位数很小,因此我们可以分解n。

p = 26440615366395242196516853423447

q = 27038194053540661979045656526063

r  = 32581479300404876772405716877547

 接下来分析数据特征

print((p - 1) * (q - 1) * (r - 1) % e)

print((p - 1) % e)

print((q - 1) % e)

print((r - 1) %  e)

    在关注到e的大小为因子的数目从模数运算角度出发拆分是一种极其重要的思维。所以我们可以通过拆分n得到足够的方程数。所以,我们需要将CRT纳入考虑范围。除此之外,我们还应该考虑到,有且仅有(q - 1)不是e的倍数,因此还要考虑有限域开根或者说是解方程。获取得到c的e根次。

p = 26440615366395242196516853423447
q = 27038194053540661979045656526063
r = 32581479300404876772405716877547
ct = 2485360255306619684345131431867350432205477625621366642887752720125176463993839766742234027524PR.<x> = PolynomialRing(Zmod(p))
f = x^3-ct
res1 = f.roots()
PR.<x> = PolynomialRing(Zmod(q))
f = x^3-ct
res2 = f.roots()
PR.<x> = PolynomialRing(Zmod(r))
f = x^3-ct
res3 = f.roots()for x in res1:for y in res2:for z in res3:m = crt([int(x[0]),int(y[0]),int(z[0])],[int(p),int(q),int(r)])if b'0ctf'in long_to_bytes(m):print(long_to_bytes(m))

这篇关于RSA:基于小加密指数的攻击方式与思维技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/297581

相关文章

游戏闪退弹窗提示找不到storm.dll文件怎么办? Stormdll文件损坏修复技巧

《游戏闪退弹窗提示找不到storm.dll文件怎么办?Stormdll文件损坏修复技巧》DLL文件丢失或损坏会导致软件无法正常运行,例如我们在电脑上运行软件或游戏时会得到以下提示:storm.dll... 很多玩家在打开游戏时,突然弹出“找不到storm.dll文件”的提示框,随后游戏直接闪退,这通常是由于

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

如何在Mac上彻底删除Edge账户? 手动卸载Edge浏览器并清理残留文件技巧

《如何在Mac上彻底删除Edge账户?手动卸载Edge浏览器并清理残留文件技巧》Mac上的Edge账户里存了不少网站密码和个人信息,结果同事一不小心打开了,简直尴尬到爆炸,想要卸载edge浏览器并清... 如果你遇到 Microsoft Edge 浏览器运行迟缓、频繁崩溃或网页加载异常等问题,可以尝试多种方