股票价格预测 | 融合CNN和Transformer以提升股票趋势预测准确度

本文主要是介绍股票价格预测 | 融合CNN和Transformer以提升股票趋势预测准确度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 本文摘要

股票价格往往很难预测,因为我们很难准确建模数据点之间的短期和长期时间关系。卷积神经网络(CNN)擅长找出用于建模短期关系的局部模式。然而,由于其有限的观察范围,CNN无法捕捉到长期关系。相比之下,Transformer可以学习全局上下文和长期关系。本文提出了一种结合CNN和Transformer的方法,来同时建模时间序列中的短期和长期关系,并预测未来股票价格是上涨、下跌还是保持不变。实验证明,这种方法在预测S&P 500成分股的盘中股价变动方面,相对于基准方法预测准确率提高了3%到14%不等。
二 背景知识

时间序列预测是一项具有挑战性的任务,尤其在金融行业中。它涉及对历史数据进行统计分析,以理解其中的复杂线性和非线性关系,并预测未来的趋势。在金融行业中,常见的预测应用包括预测市场上交易的公司股票的买入/卖出情况或价格的正/负变动。

传统的时间序列预测方法包括移动平均法、指数平滑法、自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性模型。移动平均法通过历史数据的平均值进行预测,而指数平滑法则考虑了近期数据的权重。ARMA模型结合了自回归和移动平均,而ARIMA模型在此基础上增加了对非平稳序列的差分处理。对于具有明显季节性变化的数据,可以使用季节性模型进行预测。然而,这些传统方法在处理复杂的非线性关系和长期依赖性方面有一定的限制。随着深度学习的发展,越来越多的研究关注于使用神经网络和深度学习模型进行时间序列预测。

深度学习模型中的循环神经网络(RNN)和长短期记忆(LSTM)网络被广泛应用于时间序列预测任务。RNN模型通过循环结构在网络内部传递信息,可以有效地处理序列数据的依赖关系。LSTM网络则通过门控机制,能够更好地处理长期依赖性

这篇关于股票价格预测 | 融合CNN和Transformer以提升股票趋势预测准确度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/297378

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象