损失函数:DIOU loss手写实现

2023-10-28 21:59

本文主要是介绍损失函数:DIOU loss手写实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面是纯diou代码

            '''计算两个box的中心点距离d'''# d = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)d = math.sqrt((pred[:, -1] - target[:, -1]) ** 2 + (pred[:, -2] - target[:, -2]) ** 2)# 左边xpred_l = pred[:, -1] - pred[:, -1] / 2target_l = target[:, -1] - target[:, -1] / 2# 上边ypred_t = pred[:, -2] - pred[:, -2] / 2target_t = target[:, -2] - target[:, -2] / 2# 右边xpred_r = pred[:, -1] + pred[:, -1] / 2target_r = target[:, -1] + target[:, -1] / 2# 下边ypred_b = pred[:, -2] + pred[:, -2] / 2target_b = target[:, -2] + target[:, -2] / 2'''计算两个box的bound的对角线距离'''bound_l = torch.min(pred_l, target_l)  # leftbound_r = torch.max(pred_r, target_r)  # rightbound_t = torch.min(pred_t, target_t)  # topbound_b = torch.max(pred_b, target_b)  # bottomc = math.sqrt((bound_r - bound_l) ** 2 + (bound_b - bound_t) ** 2)dloss = iou - (d ** 2) / (c ** 2)loss = 1 - dloss.clamp(min=-1.0, max=1.0)

第一步 计算两个box的中心点距离d

首先要知道pred和target的输出结果是什么
pred[:,:2]第一个:表示多个图片,第二个:2表示前两个数值,代表矩形框中心点(Y,X)
pred[:,2:]第一个:表示多个图片,第二个2:表示两个数值,代表矩形框长宽(H,W)
target[:,:2]同理,
d =
 

根据上面的分析来计算左右上下坐标lrtb

 然后计算内部2个矩形的最小外接矩形的对角线长度c

 d是两个预测矩形中心点的距离

 下面接受各种极端情况
A 两个框中心对齐时候,d/c=0,iou可能0-1

 A 两个框相距很远时,d/c=1,iou=0

 所以d/c属于0-1
dloss=iou-d/c属于-1到1
因此设置loss=1-dloss属于0-2

 

展示iou\giou\diou代码,这是YOLOX自带的损失函数,其中dloss是我自己写的
YOLOX是下载自
GitHub - Megvii-BaseDetection/YOLOX: YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/ - GitHub - Megvii-BaseDetection/YOLOX: YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/https://github.com/Megvii-BaseDetection/YOLOX

class IOUloss(nn.Module):def __init__(self, reduction="none", loss_type="iou"):super(IOUloss, self).__init__()self.reduction = reductionself.loss_type = loss_typedef forward(self, pred, target):assert pred.shape[0] == target.shape[0]pred = pred.view(-1, 4)target = target.view(-1, 4)tl = torch.max((pred[:, :2] - pred[:, 2:] / 2), (target[:, :2] - target[:, 2:] / 2))# pred target都是[H,W,Y,X]# (Y,X)-(H,W) 左上角br = torch.min((pred[:, :2] + pred[:, 2:] / 2), (target[:, :2] + target[:, 2:] / 2))# (X,Y)+(H,W) 右下角area_p = torch.prod(pred[:, 2:], 1)  # HxWarea_g = torch.prod(target[:, 2:], 1)en = (tl < br).type(tl.type()).prod(dim=1)area_i = torch.prod(br - tl, 1) * enarea_u = area_p + area_g - area_iiou = (area_i) / (area_u + 1e-16)if self.loss_type == "iou":loss = 1 - iou ** 2elif self.loss_type == "giou":c_tl = torch.min((pred[:, :2] - pred[:, 2:] / 2), (target[:, :2] - target[:, 2:] / 2))c_br = torch.max((pred[:, :2] + pred[:, 2:] / 2), (target[:, :2] + target[:, 2:] / 2))area_c = torch.prod(c_br - c_tl, 1)giou = iou - (area_c - area_u) / area_c.clamp(1e-16)loss = 1 - giou.clamp(min=-1.0, max=1.0)# pred[:, :2]  pred[:, 2:]# (Y,X)        (H,W)# target[:, :2]  target[:, 2:]# (Y,X)        (H,W)elif self.loss_type == "diou":'''计算两个box的中心点距离d'''# d = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)d = math.sqrt((pred[:, -1] - target[:, -1]) ** 2 + (pred[:, -2] - target[:, -2]) ** 2)# 左边xpred_l = pred[:, -1] - pred[:, -1] / 2target_l = target[:, -1] - target[:, -1] / 2# 上边ypred_t = pred[:, -2] - pred[:, -2] / 2target_t = target[:, -2] - target[:, -2] / 2# 右边xpred_r = pred[:, -1] + pred[:, -1] / 2target_r = target[:, -1] + target[:, -1] / 2# 下边ypred_b = pred[:, -2] + pred[:, -2] / 2target_b = target[:, -2] + target[:, -2] / 2'''计算两个box的bound的对角线距离'''bound_l = torch.min(pred_l, target_l)  # leftbound_r = torch.max(pred_r, target_r)  # rightbound_t = torch.min(pred_t, target_t)  # topbound_b = torch.max(pred_b, target_b)  # bottomc = math.sqrt((bound_r - bound_l) ** 2 + (bound_b - bound_t) ** 2)dloss = iou - (d ** 2) / (c ** 2)loss = 1 - dloss.clamp(min=-1.0, max=1.0)# Step1# def DIoU(a, b):# d = a.center_distance(b)# c = a.bound_diagonal_distance(b)# return IoU(a, b) - (d ** 2) / (c ** 2)# Step2-1# def center_distance(self, other):#    '''#    计算两个box的中心点距离#    '''#    return euclidean_distance(self.center, other.center)# Step2-2# def euclidean_distance(p1, p2):#    '''#    计算两个点的欧式距离#    '''#     x1, y1 = p1#    x2, y2 = p2#    return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)# Step3# def bound_diagonal_distance(self, other):#    '''#    计算两个box的bound的对角线距离#    '''#    bound = self.boundof(other)#    return euclidean_distance((bound.x, bound.y), (bound.r, bound.b))# Step3-2# def boundof(self, other):#    '''#    计算box和other的边缘外包框,使得2个box都在框内的最小矩形#    '''#    xmin = min(self.x, other.x)#    ymin = min(self.y, other.y)#    xmax = max(self.r, other.r)#    ymax = max(self.b, other.b)#    return BBox(xmin, ymin, xmax, ymax)# Step3-3# def euclidean_distance(p1, p2):#    '''#    计算两个点的欧式距离#    '''#     x1, y1 = p1#    x2, y2 = p2#    return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)if self.reduction == "mean":loss = loss.mean()elif self.reduction == "sum":loss = loss.sum()return loss

GitHub - Megvii-BaseDetection/YOLOX: YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/

这篇关于损失函数:DIOU loss手写实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/296226

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环