如何理解Quadratic Weighted Kappa?

2023-10-28 10:15

本文主要是介绍如何理解Quadratic Weighted Kappa?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Motivation

假定我们现在有 N N N个作文样例,以及它们对应的人类评分和GPT评分。评分一共有 C C C个互斥类别,分别是{0,1,2,3}。现在我们要衡量人类评分和GPT评分的一致性。
一个很直观的想法是,画出混淆矩阵,然后将对角线上的值汇总,除以总的样本数:
C o n s i s t e n c y h u m a n − G P T = N 人类评分 = G P T 评分 N 样本总数 Consistency_{human-GPT} = \frac{N_{人类评分=GPT评分}}{N_{样本总数}} ConsistencyhumanGPT=N样本总数N人类评分=GPT评分
这种计算方法没有考虑随机一致性。由于在分类任务中,有时两名评分者可能仅仅因为偶然而达成一致。下面引入的Cohen’s kappa指标,不仅仅考虑了观察到的一致性,而是通过考虑评分者随机达成一致的概率来调整这种一致性。

Cohen’s kappa:最基本的kappa统计

该指标用于衡量评分者之间的一致性。其值位于0和1之间,值越大说明一致性越高。下表解释了不同区间值所代表的一致性程度[1]:
图片源自https://www.statology.org/cohens-kappa-statistic/
有如下定义:
κ = p o − p e 1 − p e = 1 − 1 − p o 1 − p e \kappa = \frac{p_o - p_e}{1 - p_e} =1-\frac{1 - p_o}{1 - p_e} κ=1pepope=11pe1po
其中,
p o p_o po: observed agreement,观察到的评分者间的一致性
p e p_e pe: chance agreement,假定的基于随机选择的评分者间一致性
可以看到,相比于原来的直接使用 p o p_o po来计算一致性,这里分子分母同时剔除了“随机一致性” p e p_e pe
随机一致性的计算如下:
P 人类评分 = 0 = N 人类评分 = 0 N 样本总数 P_{人类评分=0} = \frac{N_{人类评分=0}}{N_{样本总数}} P人类评分=0=N样本总数N人类评分=0
P G P T 评分 = 0 = N G P T 评分 = 0 N 样本总数 P_{GPT评分=0} = \frac{N_{GPT评分=0}}{N_{样本总数}} PGPT评分=0=N样本总数NGPT评分=0
p e 人类评分 = G P T 评分 = 0 = P 人类评分 = 0 ∗ P G P T 评分 = 0 p_{e_{人类评分=GPT评分=0}} = P_{人类评分=0} * P_{GPT评分=0} pe人类评分=GPT评分=0=P人类评分=0PGPT评分=0
得到最终的随机一致性为:
p e = ∑ i C ( P 人类评分 = i ∗ P G P T 评分 = i ) p_e = \sum_i^C{(P_{人类评分=i} * P_{GPT评分=i})} pe=iC(P人类评分=iPGPT评分=i)

Weighted Kappa

Weighted kappa是Cohen’s kappa的扩展,特别适用于有序分类的情境。通过为每一对分类分配一个权重,可以根据不一致的严重性给予不同的惩罚。比如,评分0和3之间的不一致,大于1和2之间的不一致,那么应当给前者更重的惩罚。Quadratic Weighted Kappa,应用了平方权重,通常为分类间的距离的平方:
w i , j = ( i − j ) 2 ( C − 1 ) 2 w_{i,j} = \frac{(i-j)^2}{(C-1)^2} wi,j=(C1)2(ij)2
这里使用了归一化权重,分母用了 C − 1 C-1 C1,是因为两个评分 i i i j j j的差异的最大值是 C − 1 C-1 C1。如此,确保权重的范围在0到1之间。
κ = 1 − ∑ i , j w i , j O i , j ∑ i , j w i , j E i , j \kappa = 1- \frac{\sum_{i,j}{w_{i,j}O_{i,j}}}{\sum_{i,j}{w_{i,j}E_{i,j}}} κ=1i,jwi,jEi,ji,jwi,jOi,j

(未完待续)

[1] 图片源自https://www.statology.org/cohens-kappa-statistic/

这篇关于如何理解Quadratic Weighted Kappa?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292525

相关文章

GO语言zap日志库理解和使用方法示例

《GO语言zap日志库理解和使用方法示例》Zap是一个高性能、结构化日志库,专为Go语言设计,它由Uber开源,并且在Go社区中非常受欢迎,:本文主要介绍GO语言zap日志库理解和使用方法的相关资... 目录1. zap日志库介绍2.安装zap库3.配置日志记录器3.1 Logger3.2 Sugared

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

深入理解MySQL流模式

《深入理解MySQL流模式》MySQL的Binlog流模式是一种实时读取二进制日志的技术,允许下游系统几乎无延迟地获取数据库变更事件,适用于需要极低延迟复制的场景,感兴趣的可以了解一下... 目录核心概念一句话总结1. 背景知识:什么是 Binlog?2. 传统方式 vs. 流模式传统文件方式 (非流式)流

深入理解Go之==的使用

《深入理解Go之==的使用》本文主要介绍了深入理解Go之==的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录概述类型基本类型复合类型引用类型接口类型使用type定义的类型不可比较性谈谈map总结概述相信==判等操作,大

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.