0基础学习PyFlink——用户自定义函数之UDAF

2023-10-28 09:28

本文主要是介绍0基础学习PyFlink——用户自定义函数之UDAF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  • UDAF
    • 入参并非表中一行(Row)的集合
      • 计算每个人考了几门课
      • 计算每门课有几个人考试
      • 计算每个人的平均分
      • 计算每课的平均分
      • 计算每个人的最高分和最低分
    • 入参是表中一行(Row)的集合
      • 计算每个人的最高分、最低分以及所属的课程
      • 计算每课的最高分数、最低分数以及所属人
  • 完整代码
    • 入参并非表中一行(Row)的集合
    • 入参是表中一行(Row)的集合

在前面几篇文章中,我们学习了非聚合类的用户自定义函数。这节我们将介绍最简单的聚合函数UDAF。
在这里插入图片描述

UDAF

我们对比下UDAF和UDF的定义

def udaf(f: Union[Callable, AggregateFunction, Type] = None,input_types: Union[List[DataType], DataType, str, List[str]] = None,result_type: Union[DataType, str] = None, accumulator_type: Union[DataType, str] = None,deterministic: bool = None, name: str = None,func_type: str = "general") -> Union[UserDefinedAggregateFunctionWrapper, Callable]:
def udf(f: Union[Callable, ScalarFunction, Type] = None,input_types: Union[List[DataType], DataType, str, List[str]] = None,result_type: Union[DataType, str] = None,deterministic: bool = None, name: str = None, func_type: str = "general",udf_type: str = None) -> Union[UserDefinedScalarFunctionWrapper, Callable]:

可以发现:

  • udaf比udf多了一个参数accumulator_type
  • udaf比udf少了一个参数udf_type

accumulator中文是“累加器”。我们可以将其看成聚合过后(比如GroupBy)的成批数据,每批都要走一次函数。
举一个例子:我们对图中左侧的成绩单,使用人名(name)进行聚类,然后计算出最高分数。即算出每个人考出的最高分数是多少。
在这里插入图片描述
如图所示,聚合后的数据每个都会经过accumulator计算。计算出来的值的类型就是accumulator_type。这个类型的数据是中间态,它并不是最终UDAF返回的数据类型——result_type。具体这块的知识我们会在后面讲解。
为了方便讲解,我们就以上面例子来讲解其使用。先贴出准备的代码:

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunctiondef calc():config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])students_score = [("张三", 80.0, "English"),("李四", 75.0, "English"),("王五", 90.0, "English"),("赵六", 85.0, "English"),("张三", 60.0, "Math"),("李四", 95.0, "Math"),("王五", 90.0, "Math"),("赵六", 70.0, "Math"),("孙七", 60.0, "Math"),]tab_source = t_env.from_elements(students_score, row_type_tab_source )

我们在tab_source表中录入了学生的成绩信息,其中包括姓名(name)、成绩(score)和科目(class)。

入参并非表中一行(Row)的集合

计算每个人考了几门课

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的个数并返回
  3. 别名UDTF返回的列名
  4. select出数据
@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")def exam_count(pandas_df: pd.DataFrame):return Row(pandas_df.count())tab_student_exam_count = tab_source.group_by(col('name')) \.aggregate(exam_count(col('name')).alias("count")) \.select(col('name'), col('count')) tab_student_exam_count.execute().print()
+--------------------------------+----------------------+
|                           name |                count |
+--------------------------------+----------------------+
|                           孙七 |                    1 |
|                           张三 |                    2 |
|                           李四 |                    2 |
|                           王五 |                    2 |
|                           赵六 |                    2 |
+--------------------------------+----------------------+
5 rows in set

计算每门课有几个人考试

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合的个数并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")def exam_count(pandas_df: pd.DataFrame):return Row(pandas_df.count())tab_class_exam_count = tab_source.group_by(col('class')) \.aggregate(exam_count(col('class')).alias("count")) \.select(col('class'), col('count')) tab_class_exam_count.execute().print()
+--------------------------------+----------------------+
|                          class |                count |
+--------------------------------+----------------------+
|                        English |                    4 |
|                           Math |                    5 |
+--------------------------------+----------------------+
2 rows in set

计算每个人的平均分

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的均值并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")def avg_score(pandas_df: pd.DataFrame):return Row(pandas_df.mean())tab_student_avg_score = tab_source.group_by(col('name')) \.aggregate(avg_score(col('score')).alias("avg")) \.select(col('name'), col('avg')) tab_student_avg_score.execute().print()
+--------------------------------+--------------------------------+
|                           name |                            avg |
+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |
|                           张三 |                           70.0 |
|                           李四 |                           85.0 |
|                           王五 |                           90.0 |
|                           赵六 |                           77.5 |
+--------------------------------+--------------------------------+
5 rows in set

计算每课的平均分

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合的均值并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")def avg_score(pandas_df: pd.DataFrame):return Row(pandas_df.mean())tab_class_avg_score = tab_source.group_by(col('class')) \.aggregate(avg_score(col('score')).alias("avg")) \.select(col('class'), col('avg')) tab_class_avg_score.execute().print()
+--------------------------------+--------------------------------+
|                          class |                            avg |
+--------------------------------+--------------------------------+
|                        English |                           82.5 |
|                           Math |                           75.0 |
+--------------------------------+--------------------------------+
2 rows in set

计算每个人的最高分和最低分

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的最大值和最小值,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("min", DataTypes.FLOAT())]), func_type="pandas")def max_min_score(pandas_df: pd.DataFrame):return Row(pandas_df.max(), pandas_df.min())tab_student_max_min_score = tab_source.group_by(col('name')) \.aggregate(max_min_score(col('score')).alias("max", "min")) \.select(col('name'), col('max'), col('min')) tab_student_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+
|                           name |                            max |                            min |
+--------------------------------+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |                           60.0 |
|                           张三 |                           80.0 |                           60.0 |
|                           李四 |                           95.0 |                           75.0 |
|                           王五 |                           90.0 |                           90.0 |
|                           赵六 |                           85.0 |                           70.0 |
+--------------------------------+--------------------------------+--------------------------------+
5 rows in set

入参是表中一行(Row)的集合

计算每个人的最高分、最低分以及所属的课程

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合中分数最大值、最小值;分数最大值所在行的课程名,和分数最小值所在行的课程名,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")def max_min_score_with_class(pandas_df: pd.DataFrame):return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "class"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "class"])tab_student_max_min_score = tab_source.group_by(col('name')) \.aggregate(max_min_score_with_class.alias("max", "class(max)", "min", "class(min)")) \.select(col('name'), col('max'), col('class(max)'), col('min'), col('class(min)')) tab_student_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                           name |                            max |                     class(max) |                            min |                     class(min) |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |                           Math |                           60.0 |                           Math |
|                           张三 |                           80.0 |                        English |                           60.0 |                           Math |
|                           李四 |                           95.0 |                           Math |                           75.0 |                        English |
|                           王五 |                           90.0 |                        English |                           90.0 |                        English |
|                           赵六 |                           85.0 |                        English |                           70.0 |                           Math |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
5 rows in set

计算每课的最高分数、最低分数以及所属人

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合中分数最大值、最小值;分数最大值所在行的人名,和分数最小值所在行的人名,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")def max_min_score_with_name(pandas_df: pd.DataFrame):return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "name"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "name"])tab_class_max_min_score = tab_source.group_by(col('class')) \.aggregate(max_min_score_with_name.alias("max", "name(max)", "min", "name(min)")) \.select(col('class'), col('max'), col('name(max)'), col('min'), col('name(min)')) tab_class_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                          class |                            max |                      name(max) |                            min |                      name(min) |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                        English |                           90.0 |                           王五 |                           75.0 |                           李四 |
|                           Math |                           95.0 |                           李四 |                           60.0 |                           张三 |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
2 rows in set

完整代码

入参并非表中一行(Row)的集合

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunctiondef calc():config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])students_score = [("张三", 80.0, "English"),("李四", 75.0, "English"),("王五", 90.0, "English"),("赵六", 85.0, "English"),("张三", 60.0, "Math"),("李四", 95.0, "Math"),("王五", 90.0, "Math"),("赵六", 70.0, "Math"),("孙七", 60.0, "Math"),]tab_source = t_env.from_elements(students_score, row_type_tab_source )@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")def exam_count(pandas_df: pd.DataFrame):return Row(pandas_df.count())tab_student_exam_count = tab_source.group_by(col('name')) \.aggregate(exam_count(col('name')).alias("count")) \.select(col('name'), col('count')) tab_student_exam_count.execute().print()tab_class_exam_count = tab_source.group_by(col('class')) \.aggregate(exam_count(col('class')).alias("count")) \.select(col('class'), col('count')) tab_class_exam_count.execute().print()@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")def avg_score(pandas_df: pd.DataFrame):return Row(pandas_df.mean())tab_student_avg_score = tab_source.group_by(col('name')) \.aggregate(avg_score(col('score')).alias("avg")) \.select(col('name'), col('avg')) tab_student_avg_score.execute().print()tab_class_avg_score = tab_source.group_by(col('class')) \.aggregate(avg_score(col('score')).alias("avg")) \.select(col('class'), col('avg')) tab_class_avg_score.execute().print()@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("min", DataTypes.FLOAT())]), func_type="pandas")def max_min_score(pandas_df: pd.DataFrame):return Row(pandas_df.max(), pandas_df.min())tab_student_max_min_score = tab_source.group_by(col('name')) \.aggregate(max_min_score(col('score')).alias("max", "min")) \.select(col('name'), col('max'), col('min')) tab_student_max_min_score.execute().print()if __name__ == '__main__':calc()

入参是表中一行(Row)的集合

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunctiondef calc():config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])students_score = [("张三", 80.0, "English"),("李四", 75.0, "English"),("王五", 90.0, "English"),("赵六", 85.0, "English"),("张三", 60.0, "Math"),("李四", 95.0, "Math"),("王五", 90.0, "Math"),("赵六", 70.0, "Math"),("孙七", 60.0, "Math"),]tab_source = t_env.from_elements(students_score, row_type_tab_source )@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")def max_min_score_with_class(pandas_df: pd.DataFrame):return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "class"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "class"])tab_student_max_min_score = tab_source.group_by(col('name')) \.aggregate(max_min_score_with_class.alias("max", "class(max)", "min", "class(min)")) \.select(col('name'), col('max'), col('class(max)'), col('min'), col('class(min)')) tab_student_max_min_score.execute().print()@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")def max_min_score_with_name(pandas_df: pd.DataFrame):return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "name"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "name"])tab_class_max_min_score = tab_source.group_by(col('class')) \.aggregate(max_min_score_with_name.alias("max", "name(max)", "min", "name(min)")) \.select(col('class'), col('max'), col('name(max)'), col('min'), col('name(min)')) tab_class_max_min_score.execute().print()if __name__ == '__main__':calc()

这篇关于0基础学习PyFlink——用户自定义函数之UDAF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292271

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

如何自定义一个log适配器starter

《如何自定义一个log适配器starter》:本文主要介绍如何自定义一个log适配器starter的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求Starter 项目目录结构pom.XML 配置LogInitializer实现MDCInterceptor

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以