0基础学习PyFlink——用户自定义函数之UDAF

2023-10-28 09:28

本文主要是介绍0基础学习PyFlink——用户自定义函数之UDAF,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大纲

  • UDAF
    • 入参并非表中一行(Row)的集合
      • 计算每个人考了几门课
      • 计算每门课有几个人考试
      • 计算每个人的平均分
      • 计算每课的平均分
      • 计算每个人的最高分和最低分
    • 入参是表中一行(Row)的集合
      • 计算每个人的最高分、最低分以及所属的课程
      • 计算每课的最高分数、最低分数以及所属人
  • 完整代码
    • 入参并非表中一行(Row)的集合
    • 入参是表中一行(Row)的集合

在前面几篇文章中,我们学习了非聚合类的用户自定义函数。这节我们将介绍最简单的聚合函数UDAF。
在这里插入图片描述

UDAF

我们对比下UDAF和UDF的定义

def udaf(f: Union[Callable, AggregateFunction, Type] = None,input_types: Union[List[DataType], DataType, str, List[str]] = None,result_type: Union[DataType, str] = None, accumulator_type: Union[DataType, str] = None,deterministic: bool = None, name: str = None,func_type: str = "general") -> Union[UserDefinedAggregateFunctionWrapper, Callable]:
def udf(f: Union[Callable, ScalarFunction, Type] = None,input_types: Union[List[DataType], DataType, str, List[str]] = None,result_type: Union[DataType, str] = None,deterministic: bool = None, name: str = None, func_type: str = "general",udf_type: str = None) -> Union[UserDefinedScalarFunctionWrapper, Callable]:

可以发现:

  • udaf比udf多了一个参数accumulator_type
  • udaf比udf少了一个参数udf_type

accumulator中文是“累加器”。我们可以将其看成聚合过后(比如GroupBy)的成批数据,每批都要走一次函数。
举一个例子:我们对图中左侧的成绩单,使用人名(name)进行聚类,然后计算出最高分数。即算出每个人考出的最高分数是多少。
在这里插入图片描述
如图所示,聚合后的数据每个都会经过accumulator计算。计算出来的值的类型就是accumulator_type。这个类型的数据是中间态,它并不是最终UDAF返回的数据类型——result_type。具体这块的知识我们会在后面讲解。
为了方便讲解,我们就以上面例子来讲解其使用。先贴出准备的代码:

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunctiondef calc():config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])students_score = [("张三", 80.0, "English"),("李四", 75.0, "English"),("王五", 90.0, "English"),("赵六", 85.0, "English"),("张三", 60.0, "Math"),("李四", 95.0, "Math"),("王五", 90.0, "Math"),("赵六", 70.0, "Math"),("孙七", 60.0, "Math"),]tab_source = t_env.from_elements(students_score, row_type_tab_source )

我们在tab_source表中录入了学生的成绩信息,其中包括姓名(name)、成绩(score)和科目(class)。

入参并非表中一行(Row)的集合

计算每个人考了几门课

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的个数并返回
  3. 别名UDTF返回的列名
  4. select出数据
@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")def exam_count(pandas_df: pd.DataFrame):return Row(pandas_df.count())tab_student_exam_count = tab_source.group_by(col('name')) \.aggregate(exam_count(col('name')).alias("count")) \.select(col('name'), col('count')) tab_student_exam_count.execute().print()
+--------------------------------+----------------------+
|                           name |                count |
+--------------------------------+----------------------+
|                           孙七 |                    1 |
|                           张三 |                    2 |
|                           李四 |                    2 |
|                           王五 |                    2 |
|                           赵六 |                    2 |
+--------------------------------+----------------------+
5 rows in set

计算每门课有几个人考试

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合的个数并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")def exam_count(pandas_df: pd.DataFrame):return Row(pandas_df.count())tab_class_exam_count = tab_source.group_by(col('class')) \.aggregate(exam_count(col('class')).alias("count")) \.select(col('class'), col('count')) tab_class_exam_count.execute().print()
+--------------------------------+----------------------+
|                          class |                count |
+--------------------------------+----------------------+
|                        English |                    4 |
|                           Math |                    5 |
+--------------------------------+----------------------+
2 rows in set

计算每个人的平均分

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的均值并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")def avg_score(pandas_df: pd.DataFrame):return Row(pandas_df.mean())tab_student_avg_score = tab_source.group_by(col('name')) \.aggregate(avg_score(col('score')).alias("avg")) \.select(col('name'), col('avg')) tab_student_avg_score.execute().print()
+--------------------------------+--------------------------------+
|                           name |                            avg |
+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |
|                           张三 |                           70.0 |
|                           李四 |                           85.0 |
|                           王五 |                           90.0 |
|                           赵六 |                           77.5 |
+--------------------------------+--------------------------------+
5 rows in set

计算每课的平均分

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合的均值并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")def avg_score(pandas_df: pd.DataFrame):return Row(pandas_df.mean())tab_class_avg_score = tab_source.group_by(col('class')) \.aggregate(avg_score(col('score')).alias("avg")) \.select(col('class'), col('avg')) tab_class_avg_score.execute().print()
+--------------------------------+--------------------------------+
|                          class |                            avg |
+--------------------------------+--------------------------------+
|                        English |                           82.5 |
|                           Math |                           75.0 |
+--------------------------------+--------------------------------+
2 rows in set

计算每个人的最高分和最低分

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合的最大值和最小值,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("min", DataTypes.FLOAT())]), func_type="pandas")def max_min_score(pandas_df: pd.DataFrame):return Row(pandas_df.max(), pandas_df.min())tab_student_max_min_score = tab_source.group_by(col('name')) \.aggregate(max_min_score(col('score')).alias("max", "min")) \.select(col('name'), col('max'), col('min')) tab_student_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+
|                           name |                            max |                            min |
+--------------------------------+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |                           60.0 |
|                           张三 |                           80.0 |                           60.0 |
|                           李四 |                           95.0 |                           75.0 |
|                           王五 |                           90.0 |                           90.0 |
|                           赵六 |                           85.0 |                           70.0 |
+--------------------------------+--------------------------------+--------------------------------+
5 rows in set

入参是表中一行(Row)的集合

计算每个人的最高分、最低分以及所属的课程

  1. 按姓名(name)聚类
  2. UDTF统计聚类后集合中分数最大值、最小值;分数最大值所在行的课程名,和分数最小值所在行的课程名,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")def max_min_score_with_class(pandas_df: pd.DataFrame):return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "class"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "class"])tab_student_max_min_score = tab_source.group_by(col('name')) \.aggregate(max_min_score_with_class.alias("max", "class(max)", "min", "class(min)")) \.select(col('name'), col('max'), col('class(max)'), col('min'), col('class(min)')) tab_student_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                           name |                            max |                     class(max) |                            min |                     class(min) |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                           孙七 |                           60.0 |                           Math |                           60.0 |                           Math |
|                           张三 |                           80.0 |                        English |                           60.0 |                           Math |
|                           李四 |                           95.0 |                           Math |                           75.0 |                        English |
|                           王五 |                           90.0 |                        English |                           90.0 |                        English |
|                           赵六 |                           85.0 |                        English |                           70.0 |                           Math |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
5 rows in set

计算每课的最高分数、最低分数以及所属人

  1. 按姓名(class)聚类
  2. UDTF统计聚类后集合中分数最大值、最小值;分数最大值所在行的人名,和分数最小值所在行的人名,并返回
  3. 别名UDTF返回的列名
  4. select出数据
    @udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")def max_min_score_with_name(pandas_df: pd.DataFrame):return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "name"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "name"])tab_class_max_min_score = tab_source.group_by(col('class')) \.aggregate(max_min_score_with_name.alias("max", "name(max)", "min", "name(min)")) \.select(col('class'), col('max'), col('name(max)'), col('min'), col('name(min)')) tab_class_max_min_score.execute().print()
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                          class |                            max |                      name(max) |                            min |                      name(min) |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
|                        English |                           90.0 |                           王五 |                           75.0 |                           李四 |
|                           Math |                           95.0 |                           李四 |                           60.0 |                           张三 |
+--------------------------------+--------------------------------+--------------------------------+--------------------------------+--------------------------------+
2 rows in set

完整代码

入参并非表中一行(Row)的集合

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunctiondef calc():config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])students_score = [("张三", 80.0, "English"),("李四", 75.0, "English"),("王五", 90.0, "English"),("赵六", 85.0, "English"),("张三", 60.0, "Math"),("李四", 95.0, "Math"),("王五", 90.0, "Math"),("赵六", 70.0, "Math"),("孙七", 60.0, "Math"),]tab_source = t_env.from_elements(students_score, row_type_tab_source )@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("count", DataTypes.BIGINT())]), func_type="pandas")def exam_count(pandas_df: pd.DataFrame):return Row(pandas_df.count())tab_student_exam_count = tab_source.group_by(col('name')) \.aggregate(exam_count(col('name')).alias("count")) \.select(col('name'), col('count')) tab_student_exam_count.execute().print()tab_class_exam_count = tab_source.group_by(col('class')) \.aggregate(exam_count(col('class')).alias("count")) \.select(col('class'), col('count')) tab_class_exam_count.execute().print()@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("avg", DataTypes.FLOAT())]), func_type="pandas")def avg_score(pandas_df: pd.DataFrame):return Row(pandas_df.mean())tab_student_avg_score = tab_source.group_by(col('name')) \.aggregate(avg_score(col('score')).alias("avg")) \.select(col('name'), col('avg')) tab_student_avg_score.execute().print()tab_class_avg_score = tab_source.group_by(col('class')) \.aggregate(avg_score(col('score')).alias("avg")) \.select(col('class'), col('avg')) tab_class_avg_score.execute().print()@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("min", DataTypes.FLOAT())]), func_type="pandas")def max_min_score(pandas_df: pd.DataFrame):return Row(pandas_df.max(), pandas_df.min())tab_student_max_min_score = tab_source.group_by(col('name')) \.aggregate(max_min_score(col('score')).alias("max", "min")) \.select(col('name'), col('max'), col('min')) tab_student_max_min_score.execute().print()if __name__ == '__main__':calc()

入参是表中一行(Row)的集合

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunctiondef calc():config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('name', DataTypes.STRING()), DataTypes.FIELD('score', DataTypes.FLOAT()), DataTypes.FIELD('class', DataTypes.STRING())])students_score = [("张三", 80.0, "English"),("李四", 75.0, "English"),("王五", 90.0, "English"),("赵六", 85.0, "English"),("张三", 60.0, "Math"),("李四", 95.0, "Math"),("王五", 90.0, "Math"),("赵六", 70.0, "Math"),("孙七", 60.0, "Math"),]tab_source = t_env.from_elements(students_score, row_type_tab_source )@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")def max_min_score_with_class(pandas_df: pd.DataFrame):return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "class"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "class"])tab_student_max_min_score = tab_source.group_by(col('name')) \.aggregate(max_min_score_with_class.alias("max", "class(max)", "min", "class(min)")) \.select(col('name'), col('max'), col('class(max)'), col('min'), col('class(min)')) tab_student_max_min_score.execute().print()@udaf(result_type=DataTypes.ROW([DataTypes.FIELD("max", DataTypes.FLOAT()), DataTypes.FIELD("max tag", DataTypes.STRING()), DataTypes.FIELD("min", DataTypes.FLOAT()), DataTypes.FIELD("min tag", DataTypes.STRING())]), func_type="pandas")def max_min_score_with_name(pandas_df: pd.DataFrame):return Row(pandas_df["score"].max(), pandas_df.loc[pandas_df["score"].idxmax(), "name"], pandas_df["score"].min(), pandas_df.loc[pandas_df["score"].idxmin(), "name"])tab_class_max_min_score = tab_source.group_by(col('class')) \.aggregate(max_min_score_with_name.alias("max", "name(max)", "min", "name(min)")) \.select(col('class'), col('max'), col('name(max)'), col('min'), col('name(min)')) tab_class_max_min_score.execute().print()if __name__ == '__main__':calc()

这篇关于0基础学习PyFlink——用户自定义函数之UDAF的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292271

相关文章

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

SpringBoot UserAgentUtils获取用户浏览器的用法

《SpringBootUserAgentUtils获取用户浏览器的用法》UserAgentUtils是于处理用户代理(User-Agent)字符串的工具类,一般用于解析和处理浏览器、操作系统以及设备... 目录介绍效果图依赖封装客户端工具封装IP工具实体类获取设备信息入库介绍UserAgentUtils

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分