【知识串联】概率论中的值和量(随机变量/数字特征/参数估计)【考研向】【按概率论学习章节总结】(最大似然估计量和最大似然估计值的区别)

本文主要是介绍【知识串联】概率论中的值和量(随机变量/数字特征/参数估计)【考研向】【按概率论学习章节总结】(最大似然估计量和最大似然估计值的区别),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

就我的概率论学习经验来看,这两个概念极易混淆,并且极为重点,然而,在概率论的前几章学习中,如果只是计算,对这方面的辨析不清并没有问题。然而,到了后面的参数估计部分,却可能出现问题,而这些问题是比较隐晦而且难以发现的,并且鲜有老师强调。因此,就这方面希望能够帮助同样对概率论的这部分内容有疑惑的同学。

随机变量

首先,在学习概率最开始的时候,我们接触了随机变量X,它是一种,就是说它是变化的(这是我的理解方式)。对于这个随机变量X,我们怎么样才能让它定下来呢?通过抽样的方式。

举个例子,随机变量X(我其实感觉这个地方和最开始的事件容易混淆,我姑且把事件和随机变量混为一谈了(这个部分博友有更好的说法恳请指正))我可以说是抛硬币了,那么我只有抛了,才能知道这个值是多少,否则单论这个量(抛硬币),我是不能得出任何有用的信息的,我们只有通过抛硬币,才能发现X,X是抽象的,是被我们观察了无数次的实验结果所定义的(我姑且这么阐释了)。

当硬币抛出后,我们有了第一个样本x1,这个不一样了,我们叫它样本值x1,它是一个。是有确切的大小的。至此,我们的前三章的值和量解决完毕。

数字特征

在第四章,我们接触到了新的东西,叫做数字特征,比如期望EX,方差DX,它们是确切的,我想也是显而易见的。

对于一个随机变量X,假设它是服从标准正态分布的,显然它的期望是0,方差是1,是确定的值。

至此,我们的第四章的值和量解决完毕。

参数估计

在后面的几章中,我们接触了比较多的值和量,极大似然估计量,无偏估计量,样本均值,等等。在这里我们抽取两组进行说明,(样本均值,样本方差)和(期望,方差),极大似然估计值和极大似然估计量。

样本均值和样本方差,他们是量(这个地方是很容易混淆的)。
期望和方差,他们是值

可以这么理解,样本均值是X拔,是n分之1乘以X的求和,既然X是量,那么X拔当然也是量(见补充),同理可得样本方差。

对于极大似然估计值和极大似然估计量,有了前面的铺垫,我们可以比较清晰的解决了。

极大似然估计值是θ,是值。
极大似然估计量是θ尖,是量。

在求解极大似然估计的时候,我们发现,最开始求解极大似然估计值的时候,我们都是用的x。因为值要和值对应,(极大似然估计值和样本值相对应)。

在求解极大似然估计量的时候,我们发现,在最后一步往往是,我们转换成了θ尖,这个时候,对应的x变成了X,这是因为,量要和量对应(随机变量和极大似然估计量对应)。

这个应该怎么理解呢?这里给出一个我个人的看法。

虽然样本均值和样本方差都是值,但是就像在随机变量中,我们可以通过抽样x来观察X的性质一样,在样本均值和样本方差的观察中,我们也是通过抽样样本来估计样本均值和方差。

于是,在极大似然估计的时候,我们往往可以看到,前一步θ对应x,后一步就跳到θ尖对应X了,或者可以说,我们无法得到量,即便是样本的量我们也无法得到,但是我们可以用样本值去估计样本的量,因此,通过同步替换,可以达到用样本值代替(估计)量的效果。有了这个样本的估计量,我们再用样本的估计量去估计随机变量的数字特征(值)

样本的观测值 --------> 样本的估计量 --------> 随机变量的数字特征

第一步中,我们用样本的观测值代替样本的估计量,是因为我们假设我们经过足够多的观测后,我们可以得到随机变量的性质(基于大数定律),然而在现实生活中,我们不可能进行无穷无尽的观测,因此,就用有限次观测值来近似量

在第二步中,我们用样本的估计量来计算随机变量的数字特征就是我们在第一步的假设的延拓(比如套个D或者E,本质上就是等价变形?基于第一步的假设?)(这部分差不多可能是车轱辘话了?我暂且做个不清晰的叙述了,欢迎博友进行补充)

再举一个例子,通过样本方差S方去估计随机变量的方差,我们也是通过在S方上套一个D,就可以将其变为值,就可以进行估计了(上述的第二步)

至此,我们概率论所有重要的值和量解析完毕。

补充

X是随机变量g(X)当然也是随机变量,x是样本值,g(x)当然也是值(似乎没这么考过。。)。

这篇关于【知识串联】概率论中的值和量(随机变量/数字特征/参数估计)【考研向】【按概率论学习章节总结】(最大似然估计量和最大似然估计值的区别)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292063

相关文章

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

MySQL中VARCHAR和TEXT的区别小结

《MySQL中VARCHAR和TEXT的区别小结》MySQL中VARCHAR和TEXT用于存储字符串,VARCHAR可变长度存储在行内,适合短文本;TEXT存储在溢出页,适合大文本,下面就来具体的了解... 目录一、VARCHAR 和 TEXT 基本介绍1. VARCHAR2. TEXT二、VARCHAR

python中getsizeof和asizeof的区别小结

《python中getsizeof和asizeof的区别小结》本文详细的介绍了getsizeof和asizeof的区别,这两个函数都用于获取对象的内存占用大小,它们来自不同的库,下面就来详细的介绍一下... 目录sys.getsizeof (python 内置)pympler.asizeof.asizeof

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十