2020年全国硕士研究生入学统一考试管理类专业学位联考数学试题——解析版

本文主要是介绍2020年全国硕士研究生入学统一考试管理类专业学位联考数学试题——解析版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

2020 级考研管理类联考数学真题

一、问题求解(本大题共 15 小题,每小题 3 分,共 45 分)下列每题给出 5 个选项中,只有一个是符合要求的,请在答题卡上将所选择的字母涂黑。

1、某产品去年涨价 10%,今年涨价 20%,则产品这两年涨价( )
A.15%
B.16%
C.30%
D.32%
E.33%

解析:假设产品涨价前(即前年)的价格为 1,两年涨了 p ,则由1(1+p)=1(1+10%)(1+20%),可得 p = 0.32 ,即 32%,故选项 D 正确.

2、设A={ x ∣ ∣ x − a ∣ < 1 , x ∈ R x||x-a|<1,x∈R x∣∣xa1xR},B={ x ∣ ∣ x − b ∣ < 2 , x ∈ R x||x-b|<2,x∈R x∣∣xb2xR},则 A ⊂ B 的充分必要条件是( )
A. ∣ a − b ∣ ≤ 1 |a-b|≤1 ab1
B. ∣ a − b ∣ ≥ 1 |a-b|≥1 ab1
C. ∣ a − b ∣ < 1 |a-b|<1 ab1
D. ∣ a − b ∣ > 1 |a-b|>1 ab1
E. ∣ a − b ∣ = 1 |a-b|=1 ab=1

解析:绝对值不等式
A={ x ∣ ∣ x − a ∣ < 1 , x ∈ R x||x-a|<1,x∈R x∣∣xa1xR}→-1<x-a<1→a-1<x<1+a
B={ x ∣ ∣ x − b ∣ < 2 , x ∈ R x||x-b|<2,x∈R x∣∣xb2xR}→-2<x-b<2→b-2<x<2+b
又因为A⊂B,则可由数轴看出
在这里插入图片描述

3、一项考试的总成绩由甲乙丙三部分组成:总成绩=甲成绩×30% +乙成绩×20% +丙成绩50% ,考试通过的标准是:每部分≥50 分,且总成绩≥60 分。已知某人甲成绩 70 分,乙成绩 75 分,且通过了这项考试,则此人丙成绩的分数至少是( )
A.48
B.50
C.55
D.60
E.62

4、从 1 至 10 这 10 个整数中任取 3 个数,恰有 1 个质数的概率是( )
A. 2 3 \frac{2}{3} 32
B. 1 2 \frac{1}{2} 21
C. 5 12 \frac{5}{12} 125
D. 2 5 \frac{2}{5} 52
E. 1 120 \frac{1}{120} 1201

5、若等差数列{ a n a_n an} 满足 a 1 = 8 a_1=8 a1=8,且 a 2 + a 4 = a 1 a_2+a_4=a_1 a2+a4=a1,则{ a n a_n an} 的前n 项和的最大值为( )
A.16
B.17
C.18
D.19
E.20

6、已知实数 x 满足 x 2 + 1 x 2 − 3 x + 2 = 0 x^2+\frac{1}{x^2}-\frac{3}{x}+2=0 x2+x21x3+2=0,则 x 3 + 1 x 3 = x^3+\frac{1}{x^3}= x3+x31=( )
A.12
B.15
C.18
D.24
E.27

7、设实数 x, y 满足 ∣ x − 2 ∣ + ∣ y − 2 ∣ ≤ 2 |x-2|+|y-2|≤2 x2∣+y2∣2,则 x 2 + y 2 x^2+y^2 x2+y2的取值范围是( )
A.[2,18]
B.[2, 20]
C.[2, 36]
D.[4,18]
E.[4, 20]

8、某网店对单价为 55 元、75 元、80 元的三种商品进行促销,促销策略是每单满 200 元减m元,如果每单减m 后实际售价均不低于原价的 8 折,那么m 的最大值为( )
A.40
B.41
C.43
D.44
E.48

9、某人在同一观众群中调查了对五部电影的看法,得到如下数据:

电影第一部第二部第三部第四部第五部
好评率0.250.50.30.80.4
差评率0.750.50.70.20.6

据此数据,观众意见分歧较大的两部影片依次是( )
A.一三
B.二三
C.二五
D.四一
E.四二

10、如图,在△ABC 中,∠ABC= 3 0 0 30^0 300 ,将线段 AB 绕 B 点旋转至 DB ,使∠DBC= 6 0 0 60^0 600,则△DBC与△ABC 的面积之比为( )
A.1
B. 2 \sqrt{2} 2
C.2
D. 3 2 \sqrt{3}\over2 23
E. 3 \sqrt{3} 3
在这里插入图片描述

11、已知数列{ a n a_n an}满足 a 1 = 1 a_1=1 a1=1 a 2 = 2 a_2=2 a2=2,且 a n + 2 = a n + 1 − a n ( n = 1 , 2 , 3 , . . . ) a_{n+2}=a_{n+1}-a_n(n=1,2,3,...) an+2=an+1an(n=1,2,3,...),则 a 100 a_{100} a100=( )
A.1
B.-1
C.2
D.-2
E.0

12、如图,圆O 的内接三角形 ABC 是等腰三角形,底边BC=6,顶角为 π 4 π\over4 4π,则圆O 的面积为( )
A.12π
B.16π
C.18π
D.32π
E.36π
在这里插入图片描述

13.甲、乙分别从 A、B 两点同时出发相向而行,多次往返行走,AB 距离 1800m,甲的速度为 100m/min ,乙的速度为 80m/min ,则两人第三次相遇时,甲距其出发点( )米
A.600
B.900
C.1000
D.1400
E.1600

14.节点 A, B, C, D 两两相连,从一个节点沿线段到另一个节点当作 1 步,若机器人从节点 A出发,随机走了 3 步,则机器人从未经过节点C 的概率为( )

A. 4 9 4\over9 94
B. 11 27 11\over27 2711
C. 10 27 10\over27 2710
D. 19 27 19\over27 2719
E. 8 27 8\over27 278
在这里插入图片描述

15、某科室有 4 名男职员,2 名女职员,若将这 6 名职员分为 3 组,每组两人,且女职员不同组,则分法有( )种
A.4
B.6
C.9
D.12
E.15

二.条件充分性判断:(第 16-25 小题,每小题 3 分,共 30 分)

要求判断每题给出的条件(1)和(2)能否充分支持题干所陈述的结论,A、B、C、D、E 五个选项为判断结果,请选择一项符合试题要求的判断,请在答题卡上将所选的字母涂黑。
(A) 条件(1)充分,但条件(2)不充分
(B) 条件(2)充分,但条件(1)不充分
(C) 条件(1)和(2)都不充分,但联合起来充分
(D) 条件(1)充分,条件(2)也充分
(E) 条件(1)不充分,条件(2)也不充分,联合起来仍不充分

16、在△ABC 中,∠B= 6 0 0 60^0 600,则 c / a > 2 c/a>2 c/a2
(1) ∠ C < 9 0 0 ∠C<90^0 C900
(2) ∠ C > 9 0 0 ∠C>90^0 C900

17、曲线 上的点到 x 2 + y 2 = 2 x + 2 y x^2+y^2=2x+2y x2+y2=2x+2y上的点到 a x + b y + 2 = 0 ax+by+\sqrt2=0 ax+by+2 =0的距离最小值大于 1。
(1) a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1
(2) a > 0 , b > 0 a>0,b>0 a0b0

18、若a, b, c 是实数,则能确定a, b, c 的最大值。
(1)已知a, b, c 的平均值
(2)已知a, b, c 的最小值

19、甲、乙两种品牌手机共有 20 部,从中任选 2 部,则恰有 1 部甲品牌手机的概率大于 1 2 1\over2 21
(1)甲手机不少于 8 部
(2)乙手机大于 7 部

20、共有n 辆车,则能确定人数。
(1)若每辆车 20 座,1 车未满
(2)若每辆车 12 座,则少 10 个座

21、在长方体中,能确定长方体的体对角线长度。
(1)已知长方体一个顶点的三个面的面积
(2)已知长方体一个顶点的三个面的面对角线的长度

22、已知甲、乙、丙三人共捐款 3500 元,则能确定每人的捐款金额.
(1)三人的捐款金额各不相同
(2)三人的捐款金额都是 500 的倍数

23、设函数 f ( x ) = ( a x − 1 ) ( x − 4 ) f(x)=(ax-1)(x-4) f(x)=(ax1)(x4),则在 x = 4 左侧附近有 f ( x ) < 0 f(x)<0 f(x)0
(1) a > 1 4 a>1\over4 4a1
(2) a < 4 a<4 a4

24、设a, b 是正实数,则 1 a 1\over{a} a1+ 1 b 1\over{b} b1存在最小值.
(1)已知ab的值
(2)已知a, b 是方程 x 2 − ( a + b ) x + 2 = 0 x^2-(a+b)x+2=0 x2(a+b)x+2=0的两个不同实根

25、设a, b, c, d 是正实数,则 a + b ≤ 2 ( b + c ) \sqrt{a}+\sqrt{b}≤\sqrt{2(b+c)} a +b 2(b+c)
(1)a + d = b + c
(2)ad = bc

在这里插入图片描述

这篇关于2020年全国硕士研究生入学统一考试管理类专业学位联考数学试题——解析版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292027

相关文章

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软

linux服务之NIS账户管理服务方式

《linux服务之NIS账户管理服务方式》:本文主要介绍linux服务之NIS账户管理服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、所需要的软件二、服务器配置1、安装 NIS 服务2、设定 NIS 的域名 (NIS domain name)3、修改主

Python多进程、多线程、协程典型示例解析(最新推荐)

《Python多进程、多线程、协程典型示例解析(最新推荐)》:本文主要介绍Python多进程、多线程、协程典型示例解析(最新推荐),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 目录一、multiprocessing(多进程)1. 模块简介2. 案例详解:并行计算平方和3. 实现逻

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

SQL 外键Foreign Key全解析

《SQL外键ForeignKey全解析》外键是数据库表中的一列(或一组列),用于​​建立两个表之间的关联关系​​,外键的值必须匹配另一个表的主键(PrimaryKey)或唯一约束(UniqueCo... 目录1. 什么是外键?​​ ​​​​2. 外键的语法​​​​3. 外键的约束行为​​​​4. 多列外键​

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri