【知识串联】概率论中的值和量(随机变量/数字特征/参数估计)【考研向】【按概率论学习章节总结】(最大似然估计量和最大似然估计值的区别)

本文主要是介绍【知识串联】概率论中的值和量(随机变量/数字特征/参数估计)【考研向】【按概率论学习章节总结】(最大似然估计量和最大似然估计值的区别),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

就我的概率论学习经验来看,这两个概念极易混淆,并且极为重点,然而,在概率论的前几章学习中,如果只是计算,对这方面的辨析不清并没有问题。然而,到了后面的参数估计部分,却可能出现问题,而这些问题是比较隐晦而且难以发现的,并且鲜有老师强调。因此,就这方面希望能够帮助同样对概率论的这部分内容有疑惑的同学。

随机变量

首先,在学习概率最开始的时候,我们接触了随机变量X,它是一种,就是说它是变化的(这是我的理解方式)。对于这个随机变量X,我们怎么样才能让它定下来呢?通过抽样的方式。

举个例子,随机变量X(我其实感觉这个地方和最开始的事件容易混淆,我姑且把事件和随机变量混为一谈了(这个部分博友有更好的说法恳请指正))我可以说是抛硬币了,那么我只有抛了,才能知道这个值是多少,否则单论这个量(抛硬币),我是不能得出任何有用的信息的,我们只有通过抛硬币,才能发现X,X是抽象的,是被我们观察了无数次的实验结果所定义的(我姑且这么阐释了)。

当硬币抛出后,我们有了第一个样本x1,这个不一样了,我们叫它样本值x1,它是一个。是有确切的大小的。至此,我们的前三章的值和量解决完毕。

数字特征

在第四章,我们接触到了新的东西,叫做数字特征,比如期望EX,方差DX,它们是确切的,我想也是显而易见的。

对于一个随机变量X,假设它是服从标准正态分布的,显然它的期望是0,方差是1,是确定的值。

至此,我们的第四章的值和量解决完毕。

参数估计

在后面的几章中,我们接触了比较多的值和量,极大似然估计量,无偏估计量,样本均值,等等。在这里我们抽取两组进行说明,(样本均值,样本方差)和(期望,方差),极大似然估计值和极大似然估计量。

样本均值和样本方差,他们是量(这个地方是很容易混淆的)。
期望和方差,他们是值

可以这么理解,样本均值是X拔,是n分之1乘以X的求和,既然X是量,那么X拔当然也是量(见补充),同理可得样本方差。

对于极大似然估计值和极大似然估计量,有了前面的铺垫,我们可以比较清晰的解决了。

极大似然估计值是θ,是值。
极大似然估计量是θ尖,是量。

在求解极大似然估计的时候,我们发现,最开始求解极大似然估计值的时候,我们都是用的x。因为值要和值对应,(极大似然估计值和样本值相对应)。

在求解极大似然估计量的时候,我们发现,在最后一步往往是,我们转换成了θ尖,这个时候,对应的x变成了X,这是因为,量要和量对应(随机变量和极大似然估计量对应)。

这个应该怎么理解呢?这里给出一个我个人的看法。

虽然样本均值和样本方差都是值,但是就像在随机变量中,我们可以通过抽样x来观察X的性质一样,在样本均值和样本方差的观察中,我们也是通过抽样样本来估计样本均值和方差。

于是,在极大似然估计的时候,我们往往可以看到,前一步θ对应x,后一步就跳到θ尖对应X了,或者可以说,我们无法得到量,即便是样本的量我们也无法得到,但是我们可以用样本值去估计样本的量,因此,通过同步替换,可以达到用样本值代替(估计)量的效果。有了这个样本的估计量,我们再用样本的估计量去估计随机变量的数字特征(值)

样本的观测值 --------> 样本的估计量 --------> 随机变量的数字特征

第一步中,我们用样本的观测值代替样本的估计量,是因为我们假设我们经过足够多的观测后,我们可以得到随机变量的性质(基于大数定律),然而在现实生活中,我们不可能进行无穷无尽的观测,因此,就用有限次观测值来近似量

在第二步中,我们用样本的估计量来计算随机变量的数字特征就是我们在第一步的假设的延拓(比如套个D或者E,本质上就是等价变形?基于第一步的假设?)(这部分差不多可能是车轱辘话了?我暂且做个不清晰的叙述了,欢迎博友进行补充)

再举一个例子,通过样本方差S方去估计随机变量的方差,我们也是通过在S方上套一个D,就可以将其变为值,就可以进行估计了(上述的第二步)

至此,我们概率论所有重要的值和量解析完毕。

补充

X是随机变量g(X)当然也是随机变量,x是样本值,g(x)当然也是值(似乎没这么考过。。)。

这篇关于【知识串联】概率论中的值和量(随机变量/数字特征/参数估计)【考研向】【按概率论学习章节总结】(最大似然估计量和最大似然估计值的区别)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/291038

相关文章

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化