【PythonRS】Pyrsgis库安装+基础函数使用教程

2023-10-28 04:52

本文主要是介绍【PythonRS】Pyrsgis库安装+基础函数使用教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        pyrsgis库是一个用于处理地理信息系统(GIS)数据的Python库。它提供了一组功能强大的工具,可以帮助开发人员使用Python语言创建、处理、分析和可视化GIS数据。通过使用pyrsgis库,开发人员可以更轻松地理解和利用地理信息。

        pyrsgis库包含了许多常见的GIS操作和功能,例如读取和写入shapefile文件、转换坐标系、执行空间查询、计算地理特征属性等。它提供了许多方便使用的类和方法,例如GeoPandas、Shapely、Fiona、Rasterio、Pyproj和GDAL等,这些都可以帮助开发人员更高效地处理GIS数据。

一、Pyrsgis库安装

        Pyrsgis可以直接通过pip install pyrsgis安装,同样也可以下载压缩包然后本地安装。PyPI中Pyrsgis包下载地址:pyrsgis · PyPI

二、导入库和函数

        这些都是我后面代码需要使用到的函数,注意要导入,别到时候报错。

import os
from pyrsgis import raster, convert, ml

三、基础操作代码展示

1)获取影像基本信息

def Get_data(filepath):# 获取影像基本信息ds, data_arr = raster.read(filepath)  # 基础信息资源和数组ds_bands = ds.RasterCount  # 波段数ds_width = ds.RasterXSize  # 宽度ds_height = ds.RasterYSize  # 高度ds_bounds = ds.bbox  # 四至范围ds_geo = ds.GeoTransform  # 仿射地理变换参数ds_prj = ds.Projection  # 投影坐标系print("影像的宽度为:" + str(ds_width))print("影像的高度为:" + str(ds_height))print("仿射地理变换参数为:" + str(ds_geo))print("投影坐标系为:" + str(ds_prj))

2)计算NDVI

        这里给大家介绍一个经典案例,就是NDVI的计算。通过这个应该很容易就能理解Pyrsgis库的数据结构了。

def Get_NDVI(filepath):# 计算NDVIds, data_arr = raster.read(filepath)red_arr = data_arr[3, :, :]nir_arr = data_arr[4, :, :]result_arr = (nir_arr - red_arr) / (nir_arr + red_arr)# result_arr = (data_arr[4, :, :] - data_arr[3, :, :]) / (data_arr[4, :, :] + data_arr[3, :, :])output_file = r'E:/path_to_your_file/landsat8_result.tif'raster.export(result_arr, ds, output_file, dtype='float32', bands="all", nodata=0, compress="LZW")# 写入的数组,基础信息,路径,格式,波段,无效值,压缩方式

3)空间位置裁剪

        这里的裁剪主要是按照输入的空间矩形进行裁剪,并没有演示如何使用shp进行裁剪。这个可以应用于分幅裁剪、滑动裁剪等。空行分割的是实现这个功能的两种函数的使用方式。

def Clip_data(filepath):# 按掩膜提取ds, data_arr = raster.read(filepath)print('Original bounding box:', ds.bbox)print('Original shape of raster:', data_arr.shape)new_ds, clipped_arr = raster.clip(ds, data_arr, x_min=770000, x_max=790000, y_min=1420000, y_max=1440000)raster.export(clipped_arr, new_ds, r'E:/path_to_your_file/clipped_file.tif')infile = r'E:/path_to_your_file/your_file.tif'outfile = r'E:/path_to_your_file/clipped_file.tif'raster.clip_file(infile, x_min=770000, x_max=790000, y_min=1420000, y_max=1440000, outfile=outfile)

4)移除无效值

        这里的函数是移除无效值的,如-9999之类的,理论上应该也可以修改其他的DN值,但我自己没去试过,大家可以自行尝试。

def Modify_data(filepath):# 修改影像数组,如移除无效值ds, data_arr = raster.read(filepath)new_ds, new_arr = raster.trim(ds, data_arr, remove=-9999)print('Shape of the input array:', data_arr.shape)print('Shape of the trimmed array:', new_arr.shape)ds, data_arr = raster.read(filepath)new_arr = raster.trim_array(data_arr, remove=-9999)print('Shape of the input array:', data_arr.shape)print('Shape of the trimmed array:', new_arr.shape)infile = r'E:/path_to_your_file/your_file.tif'outfile = r'E:/path_to_your_file/trimmed_file.tif'raster.trim_file(infile, -9999, outfile)

5)平移影像

        按照x、y方向进行影像平移,可选像素和坐标进行平移。

def Shift_data(filepath):# 平移影像ds, data_arr = raster.read(filepath)new_ds = raster.shift(ds, x=10, y=10)  # x,y方向偏移量。按栅格的投影单位移动数据源 或分别按细胞数print('Original bounding box:', ds.bbox)print('Modified bounding box:', new_ds.bbox)new_ds = raster.shift(ds, x=10, y=10, shift_type='cell')  # shift_type='coordinate'print('Modified bounding box:', new_ds.GeoTransform)raster.export(data_arr, new_ds, r'E:/path_to_your_file/shifted_file.tif')infile = r'E:/path_to_your_file/your_file.tif'outfile = r'E:/path_to_your_file/shifted_file.tif'raster.shift_file(infile, x=10, y=10, outfile=outfile, shift_type='cell')

6)数组、表、CSV互转(包含剔除值)

        这里的函数是数组、表、CSV互转,在转换的同时可以通过参数移除某些DN值。

def Convert_data(filepath):# 数组转表、CSV,修改值input_file = r'E:/path_to_your_file/raster_file.tif'ds, data_arr = raster.read(input_file)  # Shape of the input array: (6, 800, 400)data_table = convert.array_to_table(data_arr)  # Shape of the reshaped array: (320000, 6)# 该函数将单波段或多波段栅格数组转换为表,其中 列表示输入波段,每行表示一个单元格。input_file = r'E:/path_to_your_file/raster_file.tif'ds, data_arr = raster.read(input_file)data_table = convert.array_to_table(data_arr)print('Shape of the input array:', data_arr.shape)  # Shape of the input array: (6, 800, 400)print('Shape of the reshaped array:', data_table.shape)  # Shape of the reshaped array: (320000, 6)input_file = r'E:/path_to_your_file/raster_file.tif'new_data_arr = convert.table_to_array(data_table, n_rows=ds.RasterYSize, n_cols=ds.RasterXSize)print('Shape of the array with newly added bands:', new_data_arr.shape)# Shape of the array with newly added bands: (8, 800, 400)new_data_arr = convert.table_to_array(data_table[:, -2:], n_rows=ds.RasterYSize, n_cols=ds.RasterXSize)print('Shape of the array with newly added bands:', new_data_arr.shape)# Shape of the array with newly added bands: (2, 800, 400)# 表转数组input_file = r'E:/path_to_your_file/raster_file.tif'output_file = r'E:/path_to_your_file/tabular_file.csv'convert.raster_to_csv(input_file, filename=output_file)input_dir = r'E:/path_to_your_file/'output_file = r'E:/path_to_your_file/tabular_file.csv'convert.raster_to_csv(input_dir, filename=output_file)convert.raster_to_csv(input_dir, filename=output_file, negative=False, remove=[10, 54, 127], badrows=False)# 数组转表,可剔除负值、目标值、坏波段input_file = r'E:/path_to_your_file/raster_file.tif'out_csvfile = input_file.replace('.tif', '.csv')convert.raster_to_csv(input_file, filename=out_csvfile, negative=False)new_csvfile = r'E:/path_to_your_file/predicted_file.tif'out_tiffile = new_csvfile.replace('.csv', '.tif')convert.csv_to_raster(new_csvfile, ref_raster=input_file, filename=out_tiffile, compress='DEFLATE')convert.csv_to_raster(new_csvfile, ref_raster=input_file, filename=out_tiffile,cols=['Blue', 'Green', 'KMeans', 'RF_Class'], compress='DEFLATE')# 数组将堆叠并导出为多光谱文件convert.csv_to_raster(new_csvfile, ref_raster=input_file, filename=out_tiffile,cols=['Blue', 'Green', 'KMeans', 'RF_Class'], stacked=False, compress='DEFLATE')# 将每列导出为单独的波段,请将参数设置为 。stacked=False

7)制作深度学习标签

        此函数根据单波段或多波段栅格阵列生成影像片。图像芯片可以用作深度学习模型的直接输入(例如。卷积神经网络),输出格式:(4198376, 7, 7, 6)

def Create_CNN(filepath):# 此函数根据单波段或多波段栅格阵列生成影像片。图像 芯片可以用作深度学习模型的直接输入(例如。卷积神经网络)# -----------------------------数组生成深度学习芯片-----------------------------infile = r'E:/path_to_your_file/your_file.tif'ds, data_arr = raster.read(infile)image_chips = ml.array_to_chips(data_arr, y_size=7, x_size=7)print('Shape of input array:', data_arr.shape)  # Shape of input array: (6, 2054, 2044)print('Shape of generated image chips:', image_chips.shape)  # Shape of generated image chips: (4198376, 7, 7, 6)infile = r'E:/path_to_your_file/your_file.tif'ds, data_arr = raster.read(infile)image_chips = ml.array2d_to_chips(data_arr, y_size=5, x_size=5)print('Shape of input array:', data_arr.shape)  # Shape of input array: (2054, 2044)print('Shape of generated image chips:', image_chips.shape)  # Shape of generated image chips: (4198376, 5, 5)# ----------------------------影像直接生成深度学习芯片----------------------------infile_2d = r'E:/path_to_your_file/your_2d_file.tif'image_chips = ml.raster_to_chips(infile_2d, y_size=7, x_size=7)print('Shape of single band generated image chips:', image_chips.shape)# Shape of single bandgenerated image chips: (4198376, 7, 7)infile_3d = r'E:/path_to_your_file/your_3d_file.tif'image_chips = ml.raster_to_chips(infile_3d, y_size=7, x_size=7)print('Shape of multiband generated image chips:', image_chips.shape)# Shape of multiband generated image chips: (4198376, 7, 7, 6)

8)翻转影像

        按照东西或南北方向翻转影像

def Reverse_Image(filepath):# 按照东西、南北方向反转影像# -------------------------------北向、东向翻转--------------------------------input_file = r'E:/path_to_your_file/your_file.tif'ds, data_arr = raster.read(input_file)north_arr, east_arr = raster.north_east(data_arr)print(north_arr.shape, east_arr.shape)north_arr, east_arr = raster.north_east(data_arr, flip_north=True, flip_east=True)north_arr = raster.north_east(data_arr, layer='north')from matplotlib import pyplot as pltplt.imshow(north_arr)plt.show()plt.imshow(east_arr)plt.show()input_file = r'E:/path_to_your_file/your_file.tif'ds, data_arr = raster.read(input_file)north_arr, east_arr = raster.north_east(data_arr)print(north_arr.shape, east_arr.shape)north_arr = raster.north_east(data_arr, layer='north')from matplotlib import pyplot as pltplt.imshow(north_arr)plt.show()plt.imshow(east_arr)plt.show()raster.export(north_arr, ds, r'E:/path_to_your_file/northing.tif', dtype='float32')raster.export(east_arr, ds, r'E:/path_to_your_file/easting.tif', dtype='float32')# -------------------------使用参考.tif文件生成北向栅格----------------------------reference_file = r'E:/path_to_your_file/your_file.tif'raster.northing(file1, r'E:/path_to_your_file/northing_number.tif', flip=False, value='number')raster.northing(file1, r'E:/path_to_your_file/northing_normalised.tif', value='normalised')  # 输出栅格进行归一化raster.northing(file1, r'E:/path_to_your_file/northing_coordinates.tif', value='coordinates')raster.northing(file1, r'E:/path_to_your_file/northing_number_compressed.tif', compress='DEFLATE')reference_file = r'E:/path_to_your_file/your_file.tif'raster.easting(file1, r'E:/path_to_your_file/easting_number.tif', flip=False, value='number')raster.easting(file1, r'E:/path_to_your_file/easting_normalised.tif', value='normalised')raster.easting(file1, r'E:/path_to_your_file/easting_normalised.tif', value='normalised')raster.easting(file1, r'E:/path_to_your_file/easting_number_compressed.tif', compress='DEFLATE')

四、总结

        Pyrsgis库之前使用的时候是因为要进行卷积神经网络的深度学习,然后里面制作深度学习标签的函数还是不错的,可以用一行代码实现标签的制作。但是如果数据过大,内存就会溢出报错,这个是Pyrsgis库没有解决的,当然我也没解决=。=大家可以自己尝试一下,有解决办法可以和我分享一下。总的来说Pyrsgis和Rasterio这两个库都还不错,都在GDAL的基础上进行了二开,方便了很多操作。

这篇关于【PythonRS】Pyrsgis库安装+基础函数使用教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/290833

相关文章

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

SQL server数据库如何下载和安装

《SQLserver数据库如何下载和安装》本文指导如何下载安装SQLServer2022评估版及SSMS工具,涵盖安装配置、连接字符串设置、C#连接数据库方法和安全注意事项,如混合验证、参数化查... 目录第一步:打开官网下载对应文件第二步:程序安装配置第三部:安装工具SQL Server Manageme

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期