计算机数值方法-雅可比迭代和高斯赛德尔迭代

2023-10-28 03:59

本文主要是介绍计算机数值方法-雅可比迭代和高斯赛德尔迭代,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法流程

其实迭代法前面已经学习过啦,这里的迭代是在前面迭代的基础上的高阶形式——即解决线性方程组的问题。

下面简单介绍雅克比迭代的基本流程。

雅可比迭代

有一线性方程组, A x = b Ax=b Ax=b,其中:
在这里插入图片描述
我们可以将其化为以下形式:
x i = B x j + f , ( i = 1 , 2 , 3...... n , j = 1 , 2 , 3 , ¬ i . . . . . n ) x_i=Bx_j+f,(i=1,2,3......n,j=1,2,3,\lnot i.....n) xi=Bxj+f,(i=1,2,3......n,j=1,2,3,¬i.....n)
则迭代形式可化为:
x i = B x i + 1 + f x^{i}=Bx^{i+1}+f xi=Bxi+1+f
j a c o b i jacobi jacobi迭代法的流程是:
若系数矩阵 A A A是非奇异矩阵且 a i i ̸ ≠ 0 a_{ii}\not\ne0 aii=0,则可以将 A A A分裂成:
A = D + L + U A=D+L+U A=D+L+U
其中 D D D为对角矩阵, L L L为下三角矩阵, U U U为上三角矩阵
则迭代公式可以转换为:
x i = − D − 1 ( L + U ) x i + 1 + f x^{i}=-D^{-1}(L+U)x^{i+1}+f xi=D1(L+U)xi+1+f
整理得:
在这里插入图片描述
具此求解.

高斯-赛德尔迭代

在雅可比迭代的流程中我们不难发现
在这里插入图片描述
前一步计算出来的 x i k + 1 x^{k+1}_i xik+1在下一步中并没有利用到,而新计算出来的值必定比前置更为精确,故为了使计算更为精确,我们将下一步中的 x i k x^k_i xik替换为上一步中计算出来的 x i k + 1 x^{k+1}_i xik+1进行计算,这种算法就叫做高斯-赛德尔迭代(Gauss-Seidel)
化简得到:
在这里插入图片描述

C++代码

雅可比迭代:

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define int long long
const int N = 1e3 + 10;
double A[N][N], B[N], X[N];
int n;
void jacobi()
{int k = N;while (k--){double X2[N];for (int i = 0; i < n; i++){double cnt = 0;for (int j = 0; j < n; j++){if (j == i)continue;elsecnt += A[i][j] * X[j];}X2[i] = (B[i] - cnt) / A[i][i];}for(int i= 0; i < n; i++) X[i]=X2[i];}for (int i = 0; i < n; i++)printf("X[%d]=%lf%c", i + 1, X2[i], i == n - 1 ? '\n' : ' ');
}signed main()
{cin >> n;for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)cin >> A[i][j];for (int i = 0; i < n; i++)cin >> B[i];jacobi();return 0;
}

高斯赛德尔迭代:

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define int long long
const int N = 1e3 + 10;
double A[N][N], B[N], X[N];
int n;
void gauss_seidel()
{int k = N;while (k--){for (int i = 0; i < n; i++){double cnt = 0;for (int j = 0; j < n; j++){if (j == i)continue;elsecnt += A[i][j] * X[j];}X[i] = (B[i] - cnt) / A[i][i];}}for (int i = 0; i < n; i++)printf("X[%d]=%lf%c", i + 1, X[i], i == n - 1 ? '\n' : ' ');
}signed main()
{cin >> n;for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)cin >> A[i][j];for (int i = 0; i < n; i++)cin >> B[i];gauss_seidel();return 0;
}

python代码

雅可比迭代:

在这里插入代码片

高斯-赛德尔迭代:

在这里插入代码片

这篇关于计算机数值方法-雅可比迭代和高斯赛德尔迭代的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/290537

相关文章

Android 12解决push framework.jar无法开机的方法小结

《Android12解决pushframework.jar无法开机的方法小结》:本文主要介绍在Android12中解决pushframework.jar无法开机的方法,包括编译指令、框架层和s... 目录1. android 编译指令1.1 framework层的编译指令1.2 替换framework.ja

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.