SparkSQL执行流程与Catalyst优化器

2023-10-26 14:30

本文主要是介绍SparkSQL执行流程与Catalyst优化器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、SparkSQL运行流程与Catalyst优化器

        (1)RDD运行流程

        (2)SparkSQL自动优化

        (3)Catalyst优化器流程

        (4)Catalyst优化器总结

        (5)Spark SQL执行流程


一、SparkSQL运行流程与Catalyst优化器

        (1)RDD运行流程
RDD简要流程

        (2)SparkSQL自动优化

        RDD的运行会完全安装开发者的代码执行,如果开发者水平有限,RDD的执行效率也会受到影响。而SparkSQL会对写完的代码,执行“ 自动优化 ”,以提高代码运行效率,比米娜开发者水平影响到代码执行效率。

        为什么Spark SQL可以自动优化,而RDD不可以?因为RDD内含数据类型不限格式和结构,而Data Frame 100%是二维表结构,可以针对性的进行优化。Spark SQL的自动优化,依赖于Catalyst优化器。

        (3)SparkSQL架构

        为了解决过多依赖Hive 的问题,SparkSQL使用了一个新的SQL优化器替代 Hive 中的优化器,这个优化器就是Catalyst,整个SparkSQL的架构大致如下:

        1.API层简单的说就是Spark 会通过一些API接受SQL语句.

        2.收到SQL语句以后,将其交给Catalyst,Catalyst负责解析SQL,生成执行计划等

        3.Catalyst的输出应该是RDD的执行计划.

        4.最终交由集群运行.

        (3)Catalyst优化器流程

        Step 1:解析SQL,并且生成AST(抽象语法树,从下往上读)

        Step2:在AST中加入元数据信息,做这一步主要是为了一些优化,如下图

        Step3:对已经加入元数据的AST,输入优化器,继续优化,从两种常见的优化开始。

        ①断言下推(Predicate Pushdown):将filter这种可以减少数据集的操作下推,放在Scan的位置,这样就可以减少操作时候的数据量。

        如下图:正常流程是先Join,然后做WHERE,断言下推后,会先过滤age,然后再Join,减少Join的数据量提高性能。

        ②列值裁剪(Column Pruning):在断言下推后执行裁剪。

        如下图:由于people表之上的操作只用到了id列,所有可以把其他列裁剪掉,这样就可以减少处理的数据量,从而优化处理速度。

        还有其余许多优化点,大概一共有一两百种,随着Spark SQL发展也会越来越多,想要了解更多可以查阅Spark源码:org.apache.spark.sql.catalyst.optimizer.Optimizer

        Step4:经过上述流程后,产生的AST其实最终还没有办法直接运行,这个AST叫做逻辑计划,结束后,需要生成物理计划,从而生成RDD来运行。

        在生成“ 物理计划 ”的时候,会经过“ 成本模型 ”对整棵树再次执行优化,选择一个更好的计划,在生成“ 物理计划 ”以后,因为考虑到性能,所有会使用代码生成,在机器中运行。可以使用queryExecution 方法查看逻辑执行计划,使用explain方法查看物理执行计划

        (4)Catalyst优化器总结

        catalyst的各种优化细节非常多,大方面的优化点有2个:

        ①谓词下推(Predicate Pushdown)\断言下推:将逻辑判断提前到前面,以减少shuffle阶段的数据量。简述,行过滤,提前执行where。

        ②列值裁剪(Column Pruning):将加载的列进行裁剪,尽量减少被处理数据的宽度。简述,列过滤,提前规划select的字段数量。

        (5)Spark SQL执行流程

        1.提交SparkSQL代码

        2.catalyst优化

                a.生成原始AST语法数

                b.标记AST元数据

                c.进行断言下推和列值裁剪以及其它方面的优化作用在AST上

                d.将最终AST得到,生成执行计划

                e.将执行计划翻译为RDD代码

        3. Driver执行环境入口构建(SparkSession)

        4.DAG调度器规划逻辑任务

        5.TASK调度区分配逻辑任务到具体Executor上工作并监控管理任务

        6. Worker干活.

这篇关于SparkSQL执行流程与Catalyst优化器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285658

相关文章

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

nodejs打包作为公共包使用的完整流程

《nodejs打包作为公共包使用的完整流程》在Node.js项目中,打包和部署是发布应用的关键步骤,:本文主要介绍nodejs打包作为公共包使用的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言一、前置准备二、创建与编码三、一键构建四、本地“白嫖”测试(可选)五、发布公共包六、常见踩坑提醒

Ubuntu向多台主机批量传输文件的流程步骤

《Ubuntu向多台主机批量传输文件的流程步骤》:本文主要介绍在Ubuntu中批量传输文件到多台主机的方法,需确保主机互通、用户名密码统一及端口开放,通过安装sshpass工具,准备包含目标主机信... 目录Ubuntu 向多台主机批量传输文件1.安装 sshpass2.准备主机列表文件3.创建一个批处理脚

一个Java的main方法在JVM中的执行流程示例详解

《一个Java的main方法在JVM中的执行流程示例详解》main方法是Java程序的入口点,程序从这里开始执行,:本文主要介绍一个Java的main方法在JVM中执行流程的相关资料,文中通过代码... 目录第一阶段:加载 (Loading)第二阶段:链接 (Linking)第三阶段:初始化 (Initia

Git打标签从本地创建到远端推送的详细流程

《Git打标签从本地创建到远端推送的详细流程》在软件开发中,Git标签(Tag)是为发布版本、标记里程碑量身定制的“快照锚点”,它能永久记录项目历史中的关键节点,然而,仅创建本地标签往往不够,如何将其... 目录一、标签的两种“形态”二、本地创建与查看1. 打附注标http://www.chinasem.cn

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke