使用matlab进行灵敏性分析(附源代码)

2023-10-25 21:20

本文主要是介绍使用matlab进行灵敏性分析(附源代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

调用单纯形程序:
function [x,z,flg,sgma]=simplexfun(A,A1,b,c,m,n,n1,cb,xx)
% A,b are the matric in Ax=b
% c is the matrix in max z=c
x
% A1 is the matric in simplex table
% m is the numbers of row in A and n is the con number in A
% n1 is the nubers of artificial variables,and artificial variables are default as the last % n1
variables in x.
% cb is the worth coefficient matrix for basic variables
% xx is the index matrix for basic variables
% B1 is the invers matrix for the basic matrix in simplex table.The initial
% matrix is default as the last m con in the matrix A.
x=zeros(n,1);
z=0;
B1=A1(:,n-m+1:n);
sgma1=c-(cb*B1)*A;
[masg,kk]=max(sgma1);
k=kk(1);
flg=0;
ll=0;
while (masg>0)&&(ll<20)
ll=ll+1;
thita=1000+zeros(m,1);
for i=1:m
if A1(i,k)>0

个人公众号 yk 坤帝
后台回复 灵敏性分析源代码 获取整理资源

thita(i)=A1(i,k)\b(i);
end
end
[r8,c8]=find(thita>999);
if sum(c8)<m
[mith,rr]=min(thita);
r=rr(1);
aa=A1(r,k);
for i=1:m
if ir b®=b®/aa;
for j=1:n
A1(r,j)=A1(r,j)/aa ;
end
end
end
for i=1:m
if i~=r
cc=A1(i,k)
b(i)=b(i)-b®*cc;
for j=1:n
A1(i,j)=A1(i,j)-A1(r,j)cc;
end
end
end
cb®=c(k);
xx®=k;
B1=A1(:,n-m+1:n);
sgma1=c-(cb
B1)*A;
[masg,kk]=max(sgma1);
k=kk(1);
thita=100+zeros(m,1);
else
flg=3;
masg=-1;
x=‘unbound solution’;
z=‘inf’;
end
end
if flg~=3
if n1
0
sgma1=c-(cbB1)A
[rc,ccc]=find(sgma1<-0.0000000001);
if sum(rc)==n-m
flg=1;
else
flg=2;
end
x=zeros(n,1);
for i=1:m
x(xx(i))=b(i);
end z=c
x;
else
x=zeros(n,1);
for i=1:m
x(xx(i))=b(i);
end
xa=x((n-n1+1):n,:);
ra=find(xa);
if sum(ra)==0
sgma1=c-(cb
B1)A;
[rc,ccc]=find(sgma1<-0.00000001);
if sum(rc)==n-m
flg=1;
else
flg=2;
end
z=c
x;
else
flg=4;
x=‘nothing’;
z=‘nothing’;
end
end
end
sgma=sgma1;
ll;
A=[1,2,1,0,0;4 0 0 1 0;0 4 0 0 1];
A1=A;
b=[8;16;12];
c=[2 3 0 0 0];
m=3;
n=5
cb=[0 0 0];
xx=[3,4,5];
然后调用单纯行解法 simplexfun111 ;
求出值,并返回 B1,b,
然后输入: r=1,2,3 求之。

在这里插入图片描述

这篇关于使用matlab进行灵敏性分析(附源代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285245

相关文章

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安