目标跟踪系列-滤波-4.粒子滤波及重采样方法

2023-10-25 21:10

本文主要是介绍目标跟踪系列-滤波-4.粒子滤波及重采样方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

滤波算法大全

1.核心思想

       粒子滤波是使用一组具有相应权值的随机样本(粒子)来表示状态的后验分布。该方法的基本思路是选取一个重要性概率密度并从中进行随机抽样,得到一些带有相应权值的随机样本后,在状态观测的基础上调节权值的大小和粒子的位置,再使用这些样本来逼近状态后验分布,最后将这组样本的加权求和作为状态的估计值。
粒子滤波不受系统模型的线性和高斯假设约束,采用样本形式而不是函数形式对状态概率密度进行描述,使其不需要对状态变量的概率分布进行过多的约束,因而在非线性非高斯动态系统中广泛应用。尽管如此,粒子滤波目前仍存在计算量过大、粒子退化等关键问题亟待突破。

粒子滤波(PF)原理详解

2.算法步骤

       Step 1: 根据p(xk-1)采样得到N个粒子xk-1(i) ∼p(xk-1)
    Step 2: 根据状态转移函数计算产生新的粒子为xk(i)
    Step 3: 计算重要性权值wk(i)   
    Step 4: 归一化重要性权值
    Step 5: 使用重采样方法对粒子进行重采样
    Step 6: 对新产生的粒子加权得到k时刻的后验状态估计

在这里插入图片描述

3.粒子滤波matlab代码

% x为采样粒子,w为粒子权重,action为运动量,observation 为观测值
function [ x,w ] = particleFilter( x,w, action, observation )global Beta;M = size(x,1);[x] = motionModel( x , action );% Motion modelWt = observationLikelihood(x,observation); % Observation Modelw = w .* Wt;w = w ./ sum(w);% Normalize the weights:ESS_before = ESS(w);if ( ESS_before < Beta*M ) % Resample?indx = resample(w);% Find the indexes for the resample:x(:,:) = x(indx,:); % Duplicate particles & set equal weights:w = ones(M,1)./M;end
endfunction [ ess ] = ESS( w )
M = size(w,1);
cv = sum( ( w.*M - 1 ).^2 ) / M;
ess = 1 / ( 1 + cv );
end

4.重要性采样(importance sampling)

重要性采样,Importance Sampling (重要性采样)介绍

5.序列重要性采样

基于序贯重要性重采样的粒子滤波and(RBPF)

6.重采样

       重采样主要是为了解决经典蒙特卡洛方法中出现的粒子匮乏现象。其主要思想是对粒子和其相应的权值表示的概率密度函数重新进行采样。通过增加权值较大粒子和减少权值较小粒子来实现。重采样虽然可以改善粒子匮乏现象,但也降低了粒子的多样性。

6.1.随机重采样仿真代码matlab

function randomR_tes%随机采样方法N=10; %粒子数目A=[2,8,2,7,3,5,5,1,4,6]; %拟定的数据集,如果可以的话,可以使用随机函数生成W=A./sum(A);%根据不同的占比值重新分配随机层的权重OutIndex=randomR(W);NewA=A(OutIndex);% matlab绘图figuresubplot(2,1,1);plot(A,'--ro','MarkerFace','g');axis([1,N,1,N]);subplot(2,1,2);plot(NewA,'--ro','MarkerFace','g');axis([1,N,1,N]);function outIndex = randomR(weight) % 随机采样函数L=length(weight);outIndex=zeros(1,L);        u=unifrnd(0,1,1,L);%产生随机分布,完全均匀   u=sort(u);cdf=cumsum(weight); %计算粒子的权重累计函数cdfi=1;for j=1:L %核心计算while (i<=L)&&(u(i)<=cdf(j))outIndex(i)=j;% 粒子复制i=i+1;% 迭代考察各个随机分层endend
end
end

6.2.重采样准测

       重采样过程中一般选取一些准则来判断有效粒子的个数,通过这个个数来判断是否进行重采样。一般的判断准则为:
在这里插入图片描述

       其中Neff为有效粒子个数,表示粒子权值,N为粒子个数。通过将Neff与预先设定的个数进行比较来决定是否重采样。一般Neff<2/3*N时候进行重采样。

function w_new=resample_particles1(w)
w_new=w;
Neff=1/sum(w.*w);
N=length(w);
if Neff<75 %75为预先设定阈值for i = 1 : Nu = rand; qtempsum = 0;for j = 1 : Nqtempsum = qtempsum + w(j);if qtempsum >= uw_new(i)=w(j);break;endendend
end

6.3.四种常用的重采样算法

       四种常用的重采样算法:简单随机重采样,分层重采样,系统重采样和残余重采样。

6.3.1.简单随机重采样
function [ indx ] = resampleMultinomial( w )
% 简单随机重采样
M = length(w);
Q = cumsum(w); %cdf函数
Q(M)=1; % Just in case...i=1;
while (i<=M)sampl = rand(1,1);  % (0,1]j=1;while (Q(j)<sampl)j=j+1;endindx(i)=j;i=i+1;
end
6.3.2.残差重采样
function [ indx ] = resampleResidual( w )
% 残差重采样
M = length(w);
Ns = floor(M .* w);% "Repetition counts" (plus the random part, later on):
R = sum( Ns );% The "remainder" or "residual" count:
M_rdn = M-R;% The number of particles which will be drawn stocastically:
Ws = (M .* w - floor(M .* w))/M_rdn;% The modified weights:% Draw the deterministic part:
i=1;
for j=1:Mfor k=1:Ns(j)indx(i)=j;i = i +1;end
end% And now draw the stocastic (Multinomial) part: 
Q = cumsum(Ws);
Q(M)=1; % Just in case...
while (i<=M)sampl = rand(1,1);  % (0,1]j=1;while (Q(j)<sampl)j=j+1;endindx(i)=j;i=i+1;
end
6.3.3.分层采样
function [ indx ] = resampleStratified( w )
% 分层采样
N = length(w);
Q = cumsum(w);
for i=1:NT(i) = rand(1,1)/N + (i-1)/N;
end
T(N+1) = 1;
i=1;
j=1;
while (i<=N)if (T(i)<Q(j))indx(i)=j;i=i+1;elsej=j+1;        end
end
6.3.4.系统重采样
function [ indx ] = resampleSystematic( w )
% 系统重采样
N = length(w);
Q = cumsum(w);
T = linspace(0,1-1/N,N) + rand(1)/N;
T(N+1) = 1;
i=1;
j=1;
while (i<=N)if (T(i)<Q(j))indx(i)=j;i=i+1;elsej=j+1;        end
end

7.粒子滤波仿真完整代码下载

粒子滤波的重采样方法:四种重采样方法(Multinomial、Residual、Stratified和Systematic)的实…

8.参考网址:

粒子滤波 particle filter (PF) 的理论及实践(matlab版)
粒子滤波-从重要性采样(IS)到序列重要性采样(SIS)再到序列重要性重采样(SIR)

这篇关于目标跟踪系列-滤波-4.粒子滤波及重采样方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285211

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法