目标跟踪系列-滤波-4.粒子滤波及重采样方法

2023-10-25 21:10

本文主要是介绍目标跟踪系列-滤波-4.粒子滤波及重采样方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

滤波算法大全

1.核心思想

       粒子滤波是使用一组具有相应权值的随机样本(粒子)来表示状态的后验分布。该方法的基本思路是选取一个重要性概率密度并从中进行随机抽样,得到一些带有相应权值的随机样本后,在状态观测的基础上调节权值的大小和粒子的位置,再使用这些样本来逼近状态后验分布,最后将这组样本的加权求和作为状态的估计值。
粒子滤波不受系统模型的线性和高斯假设约束,采用样本形式而不是函数形式对状态概率密度进行描述,使其不需要对状态变量的概率分布进行过多的约束,因而在非线性非高斯动态系统中广泛应用。尽管如此,粒子滤波目前仍存在计算量过大、粒子退化等关键问题亟待突破。

粒子滤波(PF)原理详解

2.算法步骤

       Step 1: 根据p(xk-1)采样得到N个粒子xk-1(i) ∼p(xk-1)
    Step 2: 根据状态转移函数计算产生新的粒子为xk(i)
    Step 3: 计算重要性权值wk(i)   
    Step 4: 归一化重要性权值
    Step 5: 使用重采样方法对粒子进行重采样
    Step 6: 对新产生的粒子加权得到k时刻的后验状态估计

在这里插入图片描述

3.粒子滤波matlab代码

% x为采样粒子,w为粒子权重,action为运动量,observation 为观测值
function [ x,w ] = particleFilter( x,w, action, observation )global Beta;M = size(x,1);[x] = motionModel( x , action );% Motion modelWt = observationLikelihood(x,observation); % Observation Modelw = w .* Wt;w = w ./ sum(w);% Normalize the weights:ESS_before = ESS(w);if ( ESS_before < Beta*M ) % Resample?indx = resample(w);% Find the indexes for the resample:x(:,:) = x(indx,:); % Duplicate particles & set equal weights:w = ones(M,1)./M;end
endfunction [ ess ] = ESS( w )
M = size(w,1);
cv = sum( ( w.*M - 1 ).^2 ) / M;
ess = 1 / ( 1 + cv );
end

4.重要性采样(importance sampling)

重要性采样,Importance Sampling (重要性采样)介绍

5.序列重要性采样

基于序贯重要性重采样的粒子滤波and(RBPF)

6.重采样

       重采样主要是为了解决经典蒙特卡洛方法中出现的粒子匮乏现象。其主要思想是对粒子和其相应的权值表示的概率密度函数重新进行采样。通过增加权值较大粒子和减少权值较小粒子来实现。重采样虽然可以改善粒子匮乏现象,但也降低了粒子的多样性。

6.1.随机重采样仿真代码matlab

function randomR_tes%随机采样方法N=10; %粒子数目A=[2,8,2,7,3,5,5,1,4,6]; %拟定的数据集,如果可以的话,可以使用随机函数生成W=A./sum(A);%根据不同的占比值重新分配随机层的权重OutIndex=randomR(W);NewA=A(OutIndex);% matlab绘图figuresubplot(2,1,1);plot(A,'--ro','MarkerFace','g');axis([1,N,1,N]);subplot(2,1,2);plot(NewA,'--ro','MarkerFace','g');axis([1,N,1,N]);function outIndex = randomR(weight) % 随机采样函数L=length(weight);outIndex=zeros(1,L);        u=unifrnd(0,1,1,L);%产生随机分布,完全均匀   u=sort(u);cdf=cumsum(weight); %计算粒子的权重累计函数cdfi=1;for j=1:L %核心计算while (i<=L)&&(u(i)<=cdf(j))outIndex(i)=j;% 粒子复制i=i+1;% 迭代考察各个随机分层endend
end
end

6.2.重采样准测

       重采样过程中一般选取一些准则来判断有效粒子的个数,通过这个个数来判断是否进行重采样。一般的判断准则为:
在这里插入图片描述

       其中Neff为有效粒子个数,表示粒子权值,N为粒子个数。通过将Neff与预先设定的个数进行比较来决定是否重采样。一般Neff<2/3*N时候进行重采样。

function w_new=resample_particles1(w)
w_new=w;
Neff=1/sum(w.*w);
N=length(w);
if Neff<75 %75为预先设定阈值for i = 1 : Nu = rand; qtempsum = 0;for j = 1 : Nqtempsum = qtempsum + w(j);if qtempsum >= uw_new(i)=w(j);break;endendend
end

6.3.四种常用的重采样算法

       四种常用的重采样算法:简单随机重采样,分层重采样,系统重采样和残余重采样。

6.3.1.简单随机重采样
function [ indx ] = resampleMultinomial( w )
% 简单随机重采样
M = length(w);
Q = cumsum(w); %cdf函数
Q(M)=1; % Just in case...i=1;
while (i<=M)sampl = rand(1,1);  % (0,1]j=1;while (Q(j)<sampl)j=j+1;endindx(i)=j;i=i+1;
end
6.3.2.残差重采样
function [ indx ] = resampleResidual( w )
% 残差重采样
M = length(w);
Ns = floor(M .* w);% "Repetition counts" (plus the random part, later on):
R = sum( Ns );% The "remainder" or "residual" count:
M_rdn = M-R;% The number of particles which will be drawn stocastically:
Ws = (M .* w - floor(M .* w))/M_rdn;% The modified weights:% Draw the deterministic part:
i=1;
for j=1:Mfor k=1:Ns(j)indx(i)=j;i = i +1;end
end% And now draw the stocastic (Multinomial) part: 
Q = cumsum(Ws);
Q(M)=1; % Just in case...
while (i<=M)sampl = rand(1,1);  % (0,1]j=1;while (Q(j)<sampl)j=j+1;endindx(i)=j;i=i+1;
end
6.3.3.分层采样
function [ indx ] = resampleStratified( w )
% 分层采样
N = length(w);
Q = cumsum(w);
for i=1:NT(i) = rand(1,1)/N + (i-1)/N;
end
T(N+1) = 1;
i=1;
j=1;
while (i<=N)if (T(i)<Q(j))indx(i)=j;i=i+1;elsej=j+1;        end
end
6.3.4.系统重采样
function [ indx ] = resampleSystematic( w )
% 系统重采样
N = length(w);
Q = cumsum(w);
T = linspace(0,1-1/N,N) + rand(1)/N;
T(N+1) = 1;
i=1;
j=1;
while (i<=N)if (T(i)<Q(j))indx(i)=j;i=i+1;elsej=j+1;        end
end

7.粒子滤波仿真完整代码下载

粒子滤波的重采样方法:四种重采样方法(Multinomial、Residual、Stratified和Systematic)的实…

8.参考网址:

粒子滤波 particle filter (PF) 的理论及实践(matlab版)
粒子滤波-从重要性采样(IS)到序列重要性采样(SIS)再到序列重要性重采样(SIR)

这篇关于目标跟踪系列-滤波-4.粒子滤波及重采样方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/285211

相关文章

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st