损失函数总结(四):NLLLoss、CTCLoss

2023-10-25 17:04

本文主要是介绍损失函数总结(四):NLLLoss、CTCLoss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

损失函数总结(四):NLLLoss、CTCLoss

  • 1 引言
  • 2 损失函数
    • 2.1 NLLLoss
    • 2.2 CTCLoss
  • 3 总结

1 引言

在前面的文章中已经介绍了介绍了一系列损失函数 (L1LossMSELossBCELossCrossEntropyLoss)。在这篇文章中,会接着上文提到的众多损失函数继续进行介绍,给大家带来更多不常见的损失函数的介绍。这里放一张损失函数的机理图:
在这里插入图片描述

2 损失函数

2.1 NLLLoss

NLLLoss(Negative Log Likelihood Loss,负对数似然损失)通常用于训练分类模型,尤其是在多类别分类任务中。它是一种用于度量模型的类别概率分布实际类别分布之间的差距的损失函数。NLLLoss 的数学表达式如下:
L NLL ( Y , Y ′ ) = − 1 n ∑ i = 1 n ∑ j = 1 C y i j log ⁡ ( y i j ′ ) L_{\text{NLL}}(Y, Y') = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{C} y_{ij} \log(y_{ij}') LNLL(Y,Y)=n1i=1nj=1Cyijlog(yij)

其中:

  • L CE ( Y , Y ′ ) L_{\text{CE}}(Y, Y') LCE(Y,Y) 是整个数据集上的交叉熵损失
  • n n n 是样本数量。
  • C C C 是类别数量。
  • y i j y_{ij} yij 是第 i i i 个样本的实际类别分布,通常是一个独热编码(one-hot encoding)向量,表示实际类别
  • y i j ′ y_{ij}' yij 是第 i i i 个样本的模型预测的类别概率分布,通常是一个概率向量,表示模型对每个类别的预测概率

注意:上面的公式和 CrossEntropyLoss 公式相同,但实际上是不同的。实际关系为:
NLLLoss + LogSoftmax = CrossEntropyLoss

代码实现(Pytorch):

m = nn.LogSoftmax(dim=1)
loss = nn.NLLLoss()
# input is of size N x C = 3 x 5
input = torch.randn(3, 5, requires_grad=True)
# each element in target has to have 0 <= value < C
target = torch.tensor([1, 0, 4])
output = loss(m(input), target)
output.backward()
# 2D loss example (used, for example, with image inputs)
N, C = 5, 4
loss = nn.NLLLoss()
# input is of size N x C x height x width
data = torch.randn(N, 16, 10, 10)
conv = nn.Conv2d(16, C, (3, 3))
m = nn.LogSoftmax(dim=1)
# each element in target has to have 0 <= value < C
target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C)
output = loss(m(conv(data)), target)
output.backward()

NLLLoss 通常用于分类任务,特别是当模型输出的是类别概率分布时。NLLLoss 和 CrossEntropyLoss 是等价的,可以相互替换。。。

2.2 CTCLoss

论文链接:Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

CTC Loss(Connectionist Temporal Classification Loss,连接时序分类损失)通常用于训练序列到序列(sequence-to-sequence)模型,尤其是在语音识别自然语言处理中的任务,其中输出序列的长度与输入序列的长度不一致。CTC Loss 的主要目标是将模型的输出与目标序列对齐,以度量它们之间的相似度。CTCLoss 的数学表达式如下:
L CTC ( S ) = − ln ⁡ ∑ ( x , z ) ∈ S p ( z ∣ x ) = − ∑ ( x , z ) ∈ S l n p ( z ∣ x ) L_{\text{CTC}}(S) = -\ln \sum_{(x,z) \in S} p(z|x) = -\sum_{(x,z) \in S} lnp(z|x) LCTC(S)=ln(x,z)Sp(zx)=(x,z)Slnp(zx)

其中:

  • S S S 表示训练集
  • L CTC ( S ) L_{\text{CTC}}(S) LCTC(S) 表示 给定标签序列和输入,最终输出正确序列的概率

代码实现(Pytorch):

# Target are to be padded
T = 50      # Input sequence length
C = 20      # Number of classes (including blank)
N = 16      # Batch size
S = 30      # Target sequence length of longest target in batch (padding length)
S_min = 10  # Minimum target length, for demonstration purposes
# Initialize random batch of input vectors, for *size = (T,N,C)
input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
# Initialize random batch of targets (0 = blank, 1:C = classes)
target = torch.randint(low=1, high=C, size=(N, S), dtype=torch.long)
input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
target_lengths = torch.randint(low=S_min, high=S, size=(N,), dtype=torch.long)
ctc_loss = nn.CTCLoss()
loss = ctc_loss(input, target, input_lengths, target_lengths)
loss.backward()
# Target are to be un-padded
T = 50      # Input sequence length
C = 20      # Number of classes (including blank)
N = 16      # Batch size
# Initialize random batch of input vectors, for *size = (T,N,C)
input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()
input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)
# Initialize random batch of targets (0 = blank, 1:C = classes)
target_lengths = torch.randint(low=1, high=T, size=(N,), dtype=torch.long)
target = torch.randint(low=1, high=C, size=(sum(target_lengths),), dtype=torch.long)
ctc_loss = nn.CTCLoss()
loss = ctc_loss(input, target, input_lengths, target_lengths)
loss.backward()
# Target are to be un-padded and unbatched (effectively N=1)
T = 50      # Input sequence length
C = 20      # Number of classes (including blank)
# Initialize random batch of input vectors, for *size = (T,C)
input = torch.randn(T, C).log_softmax(2).detach().requires_grad_()
input_lengths = torch.tensor(T, dtype=torch.long)
# Initialize random batch of targets (0 = blank, 1:C = classes)
target_lengths = torch.randint(low=1, high=T, size=(), dtype=torch.long)
target = torch.randint(low=1, high=C, size=(target_lengths,), dtype=torch.long)
ctc_loss = nn.CTCLoss()
loss = ctc_loss(input, target, input_lengths, target_lengths)
loss.backward()

CTCLoss 在语音识别自然语言处理中具有广泛的应用,可以广泛用于sequence-to-sequence任务。

3 总结

到此,使用 损失函数总结(四) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的损失函数也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

这篇关于损失函数总结(四):NLLLoss、CTCLoss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/283968

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使