3、电路综合原理与实践---单双端口理想微带线(伪)手算S参数与时域波形

本文主要是介绍3、电路综合原理与实践---单双端口理想微带线(伪)手算S参数与时域波形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

电路综合原理与实践—单双端口理想微带线(伪)手算S参数与时域波形与时域波形

1、单理想微带线(UE)的S参数理论推导

参考:Design of Ultra Wideband Power Transfer Networks的第四章,之后总结推导过程

自己总结的参考过程推导理论:
单微带线手算S参数理论

2、推导模型

在此举一个简单的示例,其中源阻抗为30欧姆,微带线阻抗为10欧姆,负载阻抗为50欧姆:
在这里插入图片描述

3、频域散射参数推导计算公式

所有用到的公式都在Design of Ultra Wideband Power Transfer Networks的第四章中有完整的推导:

clear
close all
%微带线电长度
ele_l=45;
%微带线电长度所在的频率
f=1e9;
%源阻抗
R1=30;
%负载阻抗
R2=50;
%微带线特性阻抗
Z0=10;
%求解频率范围,单位GHz
f_start=0.01;
f_stop=10;
f_step=0.01;%光速
c=299792458;
%求解范围
freq_solve=[f_start:f_step:f_stop]*1e9;
%计算物理长度,单位m
l=ele_l/360*c/f;
%计算不同频率下的相移常数beta
beta=2*pi*freq_solve/c;
%转换到lamda域
lamda=1j*tan(beta*l);C1=Z0*(R1+R2);
D1=Z0*Z0+R1*R2;
S11=(Z0*(R2-R1)+(Z0*Z0-R1*R2)*lamda)./(C1+D1*lamda);
S21=sqrt(R1)/sqrt(R2)*Z0*(R2+Z0)*(1+(R2-Z0)/(R2+Z0))*sqrt(1-lamda.*lamda)./(C1+D1*lamda);figure
plot(freq_solve/1e9,20*log10(abs(S11)))
xlabel('Frequency(GHz)')
ylabel('dB(S11)')
title('S11')figure
plot(freq_solve/1e9,20*log10(abs(S21)))
xlabel('Frequency(GHz)')
ylabel('dB(S21)')
title('S21')

Matlab的理论运行结果如下所示:
在这里插入图片描述
ADS仿真的对比结果如下所示,可见完全一致:
在这里插入图片描述

4、时域波形推导计算公式

推导所使用的ADS模型,其中输入的正弦波激励的峰峰值为10V,V1和I1为输入电压电流,V2和I2为输出电压电流:
在这里插入图片描述
对应的理论模型如下所示:
在这里插入图片描述
所有用到的公式都在Design of Ultra Wideband Power Transfer Networks的第四章中有完整的推导:

clear
close all
clc
%微带线电长度
ele_l=45;
%微带线电长度所在的频率
f=1e9;
%源阻抗
R1=30;
%负载阻抗
R2=50;
%微带线特性阻抗
Z0=10;
%求解频率范围,单位GHz
f_start=1;
f_stop=1;
f_step=0.01;%光速
c=299792458;
%求解范围
freq_solve=[f_start:f_step:f_stop]*1e9;
%计算物理长度,单位m
l=ele_l/360*c/f;
%计算不同频率下的相移常数beta
beta=2*pi*freq_solve/c;
%转换到lamda域
lamda=1j*tan(beta*l);C1=Z0*(R1+R2);
D1=Z0*Z0+R1*R2;
S11=(Z0*(R2-R1)+(Z0*Z0-R1*R2)*lamda)./(C1+D1*lamda);
S21=sqrt(R1)/sqrt(R2)*Z0*(R2+Z0)*(1+(R2-Z0)/(R2+Z0))*sqrt(1-lamda.*lamda)./(C1+D1*lamda);%激励信号幅度
VG=10;
%入射波A和反射波B
A=VG/2*Z0*(R2+Z0)*sqrt(1-lamda.*lamda)./(C1+D1*lamda);
B=VG/2*Z0*(R2-Z0)*sqrt(1-lamda.*lamda)./(C1+D1*lamda);
%计算1端口的电压电流
I1=VG*(Z0+R2*lamda)./(C1+D1*lamda);
V1=VG*(Z0*R2+Z0*Z0*lamda)./(C1+D1*lamda);
a1=VG/sqrt(R1);
b1=VG/sqrt(R1)*(Z0*(R2-R1)+(Z0*Z0-R1*R2)*lamda)./(C1+D1*lamda);
%计算2端口的电压电流
b2=VG/sqrt(R2)*Z0*(R2+Z0)*(1+(R2-Z0)/(R2+Z0))*sqrt(1-lamda.*lamda)./(C1+D1*lamda);
V2=b2/2*sqrt(R2);
I2=-V2/R2;
a2=V2/sqrt(R2)+sqrt(R2)*I2;disp(['端口1电压幅值为',num2str(abs(V1)),',端口1电压相位为',num2str(phase(V1)),',与激励信号相比相差',num2str(1e9*(phase(V1)/(2*pi)*1/freq_solve)),'ns'])
disp(['端口1电流幅值为',num2str(abs(I1)),',端口1电流相位为',num2str(phase(I1)),',与激励信号相比相差',num2str(1e9*(phase(I1)/(2*pi)*1/freq_solve)),'ns'])disp(['端口2电压幅值为',num2str(abs(V2)),',端口1电压相位为',num2str(phase(V2)),',与激励信号相比相差',num2str(1e9*(phase(V2)/(2*pi)*1/freq_solve)),'ns'])
disp(['端口2电流幅值为',num2str(abs(I2)),',端口1电流相位为',num2str(phase(I2)),',与激励信号相比相差',num2str(1e9*(phase(V2)/(2*pi)*1/freq_solve)),'ns'])

运行结果如下所示(都是和输入电压的相位作为比较):
在这里插入图片描述
对比一下ADS仿真结果(值得注意的是,此处Matlab求解得到的只是稳态解,然而ADS仿真得到的1ns内电路还没有进入到稳态,或许可以理解为电磁波还没有传输到终端或者入射波和反射波还没有叠加上,但是我还没有研究这种时域分析是如何进行的):
在这里插入图片描述
在这里插入图片描述

这篇关于3、电路综合原理与实践---单双端口理想微带线(伪)手算S参数与时域波形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/283967

相关文章

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实