点分治维护dp+连通块上新型dp思路+乘积方面进行根号dp:0922T4

2023-10-25 14:10

本文主要是介绍点分治维护dp+连通块上新型dp思路+乘积方面进行根号dp:0922T4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先连通块,所以点分治肯定是

Trick1 钦定选根的连通块dp

对于钦定选根的连通块dp,有一种常见思路

先对原树求其dfn序,按dfn序倒序求解

具体的,对于当前点 i i i(注意这里都是指dfn序),我们可以钦定 i i i 是否选

如果 i i i 选,就由 i + 1 i+1 i+1,也就是 i i i 的第一个儿子转移过来(因为只有他选他子树才可能被选)

如果 i i i 不选,就由 i + w i i+w_i i+wi 转移过来,因为他的儿子必然不会被选

至于 i i i i + w i i+w_i i+wi 同时选的情况,我们在 i + 1 i+1 i+1 那里已经算了

对于 i i i i + w i i+w_i i+wi 是否连通的问题,当他们的lca都被选时,则他们必然也被选,这里一定会在他们祖先那里被算到

在这里插入图片描述

Trick 2 对于乘积类dp的根号优化方法

考虑直接 d p [ x ] [ i ] dp[x][i] dp[x][i] i i i 值域过大。

但我们可以拆分 f ( x , i ) , g ( x , i ) f(x,i),g(x,i) f(x,i),g(x,i),代表已选乘积为 i i i / 还可以选乘积为 i i i 的方案数

这样状态直接压成 O ( m ) O(\sqrt m) O(m )

其实也可以用整除分块的证明进行预处理

#include<bits/stdc++.h>
using namespace std;
#define int long long
inline int read(){int x=0,f=1;char ch=getchar(); while(ch<'0'||
ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;}
#define Z(x) (x)*(x)
#define pb push_back
//mt19937 rand(time(0));
//mt19937_64 rand(time(0));
//srand(time(0));
#define N 4010
#define M 1510
#define mo (int)(1e9+7)
int n, m, i, j, k, T;
int Rt, rt, f[N][M], g[N][M]; 
int mx[N], w[N], dfn[N], tot, sum,  u, v; 
int sq, p[N], v1, v2, a[N], ans; 
vector<int>G[N]; void dfs(int x, int fa) {w[x]=mx[x]=1; for(int y : G[x]) {if(y==fa || p[y]) continue; dfs(y, x); w[x]+=w[y]; mx[x]=max(mx[x], w[y]); }mx[x]=max(mx[x], sum-w[x]); if(mx[x]<mx[rt]) rt=x; 
}void dfs2(int x, int fa) {dfn[++tot]=x;  for(int y: G[x]) if(y!=fa && !p[y]) dfs2(y, x); 
}void Add(int &a, int b) {a=(a+b)%mo; 
}void dfz(int x) {
//	printf("> %lld\n", x); int i, j, u; tot=0; dfs(x, 0); dfs2(x, 0); 
//	for(i=1; i<=tot; ++i) printf("%lld ", dfn[i]); printf("\n"); for(i=0; i<=tot+5; ++i)for(j=0; j<=sq+5; ++j) f[i][j]=g[i][j]=0; 
//	f[tot+1][1]=1; for(i=tot; i>=1; --i) {u=dfn[i]; if(a[u]>sq) Add(g[i][m/a[u]], 1); else Add(f[i][a[u]], 1); for(j=1; j<=sq; ++j) {v1=i+1; v2=i+w[u]; if(j*a[u]>sq && j*a[u]<=m) Add(g[i][m/(j*a[u])], f[v1][j]); else if(j*a[u]<=m) Add(f[i][j*a[u]], f[v1][j]); if(j>=a[u]) Add(g[i][j/a[u]], g[v1][j]); 
//			
//			
//			Add(f[i][j], f[v2][j]); Add(g[i][j], g[v2][j]); }}for(i=1; i<=sq; ++i) Add(ans, f[1][i]+g[1][i]); //	printf("# %lld : %lld\n", x, ans); dfs(x, 0); p[x]=1; for(int y : G[x]) if(!p[y]) {dfs(y, x); sum=w[y]; mx[rt=0]=1e9; dfs(y, x); dfz(rt); }
}signed main()
{
//	freopen("in.txt", "r", stdin);
//	freopen("out.txt", "w", stdout);freopen("fn.in", "r", stdin);freopen("fn.out", "w", stdout);
//	T=read();
//	while(T--) {
//
//	}n=read(); m=read(); sq=sqrt(m); 
//	printf("# %lld\n", sq); for(i=1; i<=n; ++i) a[i]=read(); for(i=1; i<n; ++i) {u=read(); v=read(); G[u].pb(v); G[v].pb(u); }sum=n; mx[rt=0]=1e9; dfs(1, 0); Rt=rt; 
//	printf("%lld\n", rt); dfz(rt);printf("%lld", (ans%mo+mo)%mo); return 0;
}

这篇关于点分治维护dp+连通块上新型dp思路+乘积方面进行根号dp:0922T4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/283110

相关文章

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL进行分片合并的实现步骤

《MySQL进行分片合并的实现步骤》分片合并是指在分布式数据库系统中,将不同分片上的查询结果进行整合,以获得完整的查询结果,下面就来具体介绍一下,感兴趣的可以了解一下... 目录环境准备项目依赖数据源配置分片上下文分片查询和合并代码实现1. 查询单条记录2. 跨分片查询和合并测试结论分片合并(Shardin

Python实现开根号的五种方式

《Python实现开根号的五种方式》在日常数据处理、数学计算甚至算法题中,开根号是一个高频操作,但你知道吗?Python中实现开根号的方式远不止一种!本文总结了5种常用方法,感兴趣的小伙伴跟着小编一起... 目录一、为什么需要多种开根号方式?二、5种开根号方式详解方法1:数学库 math.sqrt() ——

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter