Additive Powers-of-Two (APoT) Quantization:硬件友好的非均匀量化方法

本文主要是介绍Additive Powers-of-Two (APoT) Quantization:硬件友好的非均匀量化方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Additive Powers-of-Two Quantization:硬件友好的非均匀量化方法

      • 摘要
      • 方法
        • Additive Powers-of-Two量化 (APoT)
          • 量化表示
          • 均匀量化表示
          • Powers-of-Two (PoT) 量化表示
          • Additive Powers-of-Two(APoT)量化表示
        • 参数化Clipping函数 (RCF)
        • 权重归一化
        • APoT量化伪代码
      • 实验结果
        • CIFAR-10
        • ImageNet

本文是电子科大&哈佛大学&新加坡国立联合发表在 ICLR2020 上的一篇非均匀量化(APoT)的工作。本文,在非均匀量化中通过采用Additive Powers-of-Two(APoT)加法二次幂量化,综合考虑了计算上有效性,低比特量化导致的模型精度下降问题。并实现了不错的量化效果!

  • 论文题目:Additive Powers-of-Two Quantization: A Non-uniform Discretization for Neural Networks
  • 论文链接:https://arxiv.org/pdf/1909.13144v2.pdf
  • 论文代码:https://github.com/yhhhli/APoT_Quantization

摘要

本文首先提出了Additive Powers-of-Two(APoT)加法二次幂量化,一种针对钟形和长尾分布的神经网络权重,有效的非均匀性量化方案。通过将所有量化数值限制为几个二次幂相加,这APoT量化有利于提高计算效率,并与权重分布良好匹配。其次,本文通过参数化Clipping函数以生成更好的更新最佳饱和阈值的梯度。最后,提出对权重归一化来调整权重的输入分布,使其在量化后更加稳定和一致。实验结果表明,本文提出的方法优于最先进的方法,甚至可以与全精度模型竞争,因此证明了本文提出的APoT量化的有效性。例如,本文在 ImageNe t上的 3bit 量化 ResNet-34 仅下降了 0.3% 的 Top-1 和 0.2% Top-5 的准确性。

方法

Additive Powers-of-Two量化 (APoT)

三种量化方法示意图

量化表示

W ^ = Π Q ( α , b ) ⌊ W , α ⌉ \hat{\boldsymbol{W}}=\Pi_{\mathcal{Q}(\alpha, b)}\lfloor\boldsymbol{W}, \alpha\rceil W^=ΠQ(α,b)W,α

  • W ∈ R C out × C in × K × K \boldsymbol{W} \in \mathbb{R}^{C_{\text {out}} \times C_{\text {in}} \times K \times K} WRCout×Cin×K×K
  • α \alpha α 代表裁剪阈值。
  • ⌊ ⋅ , α ⌉ \lfloor \cdot , \alpha\rceil ,α 代表Clip函数,将权重裁剪到 [ − α , α ] [-\alpha, \alpha] [α,α]
  • W \boldsymbol{W} W中每个元素通过 Π ( ⋅ ) \Pi(\cdot) Π() 映射成量化值
  • Q ( α , b ) \mathcal{Q}(\alpha, b) Q(α,b)代表量化候选数值
  • b b b 代表量化位宽
均匀量化表示

Q u ( α , b ) = α × { 0 , ± 1 2 b − 1 − 1 , ± 2 2 b − 1 − 1 , … , ± 1 } \mathcal{Q}^{u}(\alpha, b)=\alpha \times\left\{0, \frac{\pm 1}{2^{b-1}-1}, \frac{\pm 2}{2^{b-1}-1}, \ldots,\pm 1\right\} Qu(α,b)=α×{0,2b11±1,2b11±2,,±1}

Powers-of-Two (PoT) 量化表示

Q p ( α , b ) = α × { 0 , ± 2 − 2 b − 1 + 1 , ± 2 − 2 b − 1 + 2 , … , ± 2 − 1 , ± 1 } \mathcal{Q}^{p}(\alpha, b)=\alpha \times\left\{0, \pm 2^{-2^{b-1}+1}, \pm 2^{-2^{b-1}+2}, \ldots, \pm 2^{-1},\pm 1\right\} Qp(α,b)=α×{0,±22b1+1,±22b1+2,,±21,±1}

基于Powers-of-Two (PoT) 的非均匀量化模式有一个好处是在计算过程中可以采用移位的方式代替复杂的乘法运算,因此幂次的非均匀量化可以显著提高计算效率。如下公示所示:

2 k x = { x if  k = 0 x < < k if  k > 0 x > > k if  k < 0 2^{k} x=\left\{\begin{array}{lr} x & \text { if } k = 0 \\ x << k & \text { if } k > 0 \\ x >> k & \text { if } k < 0 \end{array}\right. 2kx=xx<<kx>>k if k=0 if k>0 if k<0

基于Powers-of-Two (PoT) 的非均匀量化十分适配基于钟型的weights形式,可以实现0附近权重集中的位置量化表示多,长尾部分量化表示少。

Additive Powers-of-Two(APoT)量化表示

PoT 量化虽然十分适配基于钟型的weights形式,但是,对于增加bit数是没有明显增益。比如,我们将位宽从 b b b设置为 b + 1 b+1 b+1 [ 0 , ± 2 − 2 b − 1 + 1 ] \left[0, \pm 2^{-2^{b-1}+1}\right] [0,±22b1+1]范围内的间隔(interval)不会发生变化,只是在 [ − 2 − 2 b − 1 + 1 , 2 − 2 b − 1 + 1 ] \left[-2^{-2^{b-1}+1}, 2^{-2^{b-1}+1}\right] [22b1+1,22b1+1]范围进一步缩小间隔。这个问题被定义为 rigid resolution(刚性分辨率)问题。为解决此问题,本文提出了APoT量化表示。

Q a ( α , k n ) = γ × { ∑ i = 0 n − 1 p i } where  p i ∈ { 0 , 1 2 i , 1 2 i + n , … , 1 2 i + ( 2 k − 1 ) n } \mathcal{Q}^{a}(\alpha, k n)=\gamma \times\left\{\sum_{i=0}^{n-1} p_{i}\right\} \text { where } p_{i} \in\left\{0, \frac{1}{2^{i}}, \frac{1}{2^{i+n}}, \ldots, \frac{1}{2^{i+\left(2^{k}-1\right) n}}\right\} Qa(α,kn)=γ×{i=0n1pi} where pi{0,2i1,2i+n1,,2i+(2k1)n1}

  • γ \gamma γ 是一个缩放系数,以确保 Q a \mathcal{Q}^{a} Qa 中的最大级别是 γ \gamma γ
  • k k k 称为基位宽,即每个加法项的位宽 n n n 是加法项的数量。
  • 当设置了位宽 b b b和基位宽 k k k时, n n n可由 n = b k n=\frac{b}{k} n=kb计算得到。
参数化Clipping函数 (RCF)

传统的STE仅仅对clip函数边界以外的阈值梯度值进行更新,对于边界以内的阈值参数梯度均为零,这不利于寻找最优的clip阈值边界。

∂ W ^ ∂ α ≈ ∂ ⌊ W , α ⌉ ∂ α = sign ⁡ ( W ) if  ∣ W ∣ > α else  0 \frac{\partial \hat{W}}{\partial \alpha} \approx \frac{\partial\lfloor W, \alpha\rceil}{\partial \alpha}=\operatorname{sign}(W) \text { if }|W|>\alpha \text { else } 0 αW^αW,α=sign(W) if W>α else 0

针对传统STE梯度约束不完整的问题,本文对权重内外的阈值边界梯度均进行梯度约束,以便于更快更好的训练得到最优阈值。

W ^ = α Π Q ( 1 , b ) ⌊ W α , 1 ⌉ \hat{\boldsymbol{W}}=\alpha \Pi_{\mathcal{Q}(1, b)}\left\lfloor\frac{\boldsymbol{W}}{\alpha}, 1\right\rceil W^=αΠQ(1,b)αW,1

∂ W ^ ∂ α = { sign ⁡ ( W ) if  ∣ W ∣ > α Π Q ( 1 , b ) W α − W α if  ∣ W ∣ ≤ α \frac{\partial \hat{\boldsymbol{W}}}{\partial \alpha}=\left\{\begin{array}{ll} \operatorname{sign}(\boldsymbol{W}) & \text { if }|\boldsymbol{W}|>\alpha \\ \Pi_{\mathcal{Q}(1, b)} \frac{\boldsymbol{W}}{\alpha}-\frac{\boldsymbol{W}}{\alpha} & \text { if }|\boldsymbol{W}| \leq \alpha \end{array}\right. αW^={sign(W)ΠQ(1,b)αWαW if W>α if Wα


class _pq(torch.autograd.Function):@staticmethoddef forward(ctx, input, alpha):input.div_(alpha)                          # weights are first divided by alphainput_c = input.clamp(min=-1, max=1)       # then clipped to [-1,1]sign = input_c.sign()input_abs = input_c.abs()if power:input_q = power_quant(input_abs, grids).mul(sign)  # project to Q^a(alpha, B)else:input_q = uniform_quant(input_abs, b).mul(sign)ctx.save_for_backward(input, input_q)input_q = input_q.mul(alpha)               # rescale to the original rangereturn input_q@staticmethoddef backward(ctx, grad_output):grad_input = grad_output.clone()             # grad for weights will not be clippedinput, input_q = ctx.saved_tensorsi = (input.abs()>1.).float()sign = input.sign()grad_alpha = (grad_output*(sign*i + (input_q-input)*(1-i))).sum()return grad_input, grad_alpha
权重归一化

权重归一化为裁剪(Clip)和投影(projection)提供了相对一致且稳定的输入分布,这便于在训练过程中更平滑地优化不同层和迭代。 此外,将权重的平均值设为零可以使得量化更加对称。权重归一化公式如下,主要是通过权重值减均值除方差完成,使得归一化后的权重分布满足均值为0方差为1。

W ~ = W − μ σ + ϵ , where  μ = 1 I ∑ i = 1 I W i , σ = 1 I ∑ i = 1 I ( W i − μ ) 2 \tilde{\boldsymbol{W}}=\frac{\boldsymbol{W}-\mu}{\sigma+\epsilon}, \text { where } \mu=\frac{1}{I} \sum_{i=1}^{I} \boldsymbol{W}_{i}, \sigma=\sqrt{\frac{1}{I} \sum_{i=1}^{I}\left(\boldsymbol{W}_{i}-\mu\right)^{2}} W~=σ+ϵWμ, where μ=I1i=1IWi,σ=I1i=1I(Wiμ)2

权重归一化使得训练参数更加一致

APoT量化伪代码

APoT量化伪代码

实验结果

CIFAR-10

CIFAR-10量化结果

ImageNet

ImageNet量化结果-表格

ImageNet量化结果-柱状图


更多内容关注微信公众号【AI异构】

这篇关于Additive Powers-of-Two (APoT) Quantization:硬件友好的非均匀量化方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282705

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自