【多模态】18、ViLD | 通过对视觉和语言知识蒸馏来实现开集目标检测(ICLR2022)

本文主要是介绍【多模态】18、ViLD | 通过对视觉和语言知识蒸馏来实现开集目标检测(ICLR2022),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 对新类别的定位 Localization
      • 2.2 使用 cropped regions 进行开放词汇检测
      • 2.3 ViLD
    • 三、效果

论文:Open-vocabulary Object Detection via Vision and Language Knowledge Distillation

代码:https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild

效果:

  • 在 zero-shot 测试下,coco 达到了 36.6 AP,PASCAL VOC 达到了 72.2AP,Object365 达到了 11.8AP

本文提出了 Vision and Language knowledge Distillation(ViLD):

  • 通过将预训练的开集分类模型作为 teacher model,来蒸馏两阶段目标检测器 student model
  • 即使用 teacher model 来对 category texts 和 proposal region进行编码
  • 然后训练 student detector 来对齐 text 和 region embedding

一、背景

在这里插入图片描述

如图 1 所示,作者思考,目标检测器能否识别 base category 之外的类别?

所以,本文作者就构建了一个 open-vocabulary 目标检测器,用于检测从 text 输入的任意类别的目标

现有的目标检测方法都是只学习数据集中出现的类别,而扩充检测类别的方法就是收集更多的类别标注数据,如 LVIS 包括 1203 个类别,有较为丰富的词汇量,但也不够强大。

另外一方面,互联网上有丰富的 image-text pairs,CLIP 就尝试使用 4 亿图文对儿来联合训练模型,并且在 30 个数据集上展示了很好的效果

zero-shot 迁移的效果很大程度上来源于预训练的 text encoder 对任意类别文本的编码能力,尽管现在对 image-level 特征表达的编码能力已经被证明挺好的了,但还 object-level 的特征编码仍然很有挑战

所以,本文作者思考能否从开集分类模型中拿到一些能力来用于开集检测

作者首先从 R-CNN 类的方法入手,将开集目标检测也构建为两个子问题:

  • object proposal 的生成
  • open-vocabulary 图像分类

如何操作 R-CNN 类的模型:

  • 先基于基础类别训练一个 region proposal model
  • 然后使用预训练好的图像分类器来对 cropped object proposal 进行分类,可以包括新类和基础类
  • 作者使用 LVIS 当做 benchmark,把 rare 类别作为 novel categories,将其他类当做 base categories
  • 缺点:很慢,因为每个 object proposal 都是一个个的进入分类器来分类的

基于此,作者提出了 ViLD,来训练两阶段的开放词汇目标检测器,ViLD 包含两部分:从开集目标分类模型的输出中来学习 text embedding 和 image embedding

  • ViLD-text:只会从基础类中蒸馏
    • 首先,将类别名称输入预训练好的 text encoder 来得到 text embedding
    • 然后,使用推理的 text embedding 结果来对检测到的 region 进行分类
  • ViLD-image:会同时从基础类和新类中来蒸馏,因为 proposal 网络可能会检测到包含新类的区域
    • 首先,将 object proposal 经过 NMS 算法过滤后,在原图上裁剪,裁剪出原图区域,然后将裁剪后的原图送入 CLIP 的 image encoder 中,CLIP 的 image encoder 的输出就是该区域的教师特征,
    • 然后,训练一个 Mask R-CNN 来学习教师网络的输出,也就是将 student 输出和 teacher image embedding 来对齐

二、方法

在这里插入图片描述

作者将检测数据集中的类别分类 base 和 novel:

  • base: C B C_B CB,参与训练
  • novel: C N C_N CN

编码器符号:

  • T ( . ) T(.) T(.):text encoder
  • V ( . ) V(.) V(.):image encoder

2.1 对新类别的定位 Localization

开放词汇目标检测的第一个挑战就是对新类别目标的定位

作者以 Mask RCNN 为例,作者使用 class-agnostic 模块替换了 class-specific 定位模块,对每个 RoI,模型只能对所有类别预测一个 bbox 和一个 mask,而不是每个类别都会预测一个,所以,使用 class-agnostic 的模块可以扩展到用于新类别的定位

2.2 使用 cropped regions 进行开放词汇检测

一旦对目标候选区域定位成功,就可以使用预训练好的分类器来对区域进行分类

Image embedding:

  • 作者基于基础类别 C B C_B CB 训练了一个 proposal 网络,来提取感兴趣区域
  • 首先从原图中 crop 并 resize ,然后将原图区域输入 CLIP 的 image encoder 中计算 image embedding
  • 作者使用了两种 crop 区域的 resize 方式:1x 和 1.5x,1.5x 的用于提供更多的上下文信息,整合后的 embedding 然后会被归一化

Text embedding:

  • 作者会使用 prompt 模版(如 “a photo of {} in the scene”)来送入 text encoder,并得到 text embedding

相似度:

  • 计算完两个 embedding 之后,作者使用 cosine similarities 来计算 image embedding 和 text embedding 的相似程度,然后使用 softmax 激活和类内的 NMS 来得到最终的检测结果

效率:

  • 由于每个 cropped region 都会被送入 image encoder 来提取 image embedding,所以效率很低

2.3 ViLD

在这里插入图片描述

作者提出了 ViLD 来缓解上面提到的效率低的问题

使用 text embedding 来代替分类器:

  • 首先,引入了 ViLD-text,目标是训练一个可以使用 text embedding 来分类的 region embedding
  • 如图 3b 展示了训练的目标函数,使用 text embedding 来代替了如图 3a 的分类器,只有 text embedding 用于训练
  • 对于没有匹配到任何 gt 的 proposal,被分配到背景类别,可以学习其自己的编码 e b g e_{bg} ebg
  • 对所有类别编码,都计算 region embedding 和 category embedding 的余弦相似性,包括前景和背景 e b g e_{bg} ebg
  • 然后,计算带温度参数的 softmax 激活后的分布并计算 cross-entropy loss
  • 为了训练第一个阶段,也就是 region proposal 网络,作者在线抽取 region proposal r,并且从头开始使用 ViLD-text 来训练

ViLD-text 的 loss 如下:

在这里插入图片描述

蒸馏 image embedding:

训练 ViLD-image 时,主要是从 teacher model 来蒸馏到 student model 上

为了提升训练速度,对每个 training image 先离线抽取 M 个 proposal,并且计算其对应的 image embedding

这些 proposal 包含了基础类和新类,所以网络是可以扩展的

但 ViLD-text 只能从基础类学习

ViLD-image loss 是 region embedding 和 image embedding 的 L1 loss:

在这里插入图片描述

ViLD 的整个训练 loss 如下:w 是超参数

在这里插入图片描述

三、效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这篇关于【多模态】18、ViLD | 通过对视觉和语言知识蒸馏来实现开集目标检测(ICLR2022)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282532

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java Kafka消费者实现过程

《JavaKafka消费者实现过程》Kafka消费者通过KafkaConsumer类实现,核心机制包括偏移量管理、消费者组协调、批量拉取消息及多线程处理,手动提交offset确保数据可靠性,自动提交... 目录基础KafkaConsumer类分析关键代码与核心算法2.1 订阅与分区分配2.2 拉取消息2.3

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装