不知如何选股?不知哪种指标策略可靠?量化分析比较DBCD、ROC、VROC、CR、PSY指标策略收益情况

本文主要是介绍不知如何选股?不知哪种指标策略可靠?量化分析比较DBCD、ROC、VROC、CR、PSY指标策略收益情况,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

从股票市场开始到现在,已经研究出了众多的指标,但是在使用的时候会发现,由于第二天股价的未知波动,指标显示的情况并不一定每次都准确,总是会存在误判的情况。对于这种不可避免的情况而言,我们只能想办法将其量化、计算根据策略操作后的收益率、估计误判的概率等

本文先选择了 DBCD、ROC、VROC、CR、PSY 五种指标来量化(一共会考虑了三十多种指标,由于篇幅问题一次讨论五种),然后用十支股票来测试这五种策略的效果实际情况是用了 3600+ 股票来统计策略效果,目前不方便展示结果

免责声明

此构想和分析中的任何内容均不应解释为投资建议,过去的表现并不一定表示未来的结果。

指标策略量化分析

  • 前言
  • 免责声明
  • 数据准备
  • 指标介绍
    • DBCD指标
    • ROC指标
    • VROC指标
    • CR指标
    • PSY指标
  • 最后的量化结果



数据准备

选择了 600519 贵州茅台、600031 三一重工、002594 比亚迪、601633 长城汽车、002074 国轩高科、300750 宁德时代、300014 亿纬锂能、000591 太阳能、002475 立讯精密、600862 中航高科 这十支股票 2020年1月1日 ~ 2021年1月15日 的数据来测试

部分代码片段

import pandas_datareader.data as web
import datetimestart = datetime.datetime(2020, 1, 1)
end = datetime.datetime(2021, 1, 15)
df = web.DataReader(ticker, "yahoo", start, end)


指标介绍

sma是平滑移动指标的计算函数
_ma是移动平均线的计算函数
_md是标准差的计算函数
_ema是指数移动平均线的计算函数

DBCD指标

def dbcd(df, n=5, m=16, t=76):_dbcd = pd.DataFrame()_dbcd['date'] = df.dateman = _ma(df.close, n)_bias = (df.close - man) / man_dif = _bias - _bias.shift(m)_dbcd['dbcd'] = sma(_dif, t)_dbcd['mm'] = _ma(_dbcd.dbcd, n)return _dbcd

ROC指标

def roc(df, n=12, m=6):_roc = pd.DataFrame()_roc['date'] = df['date']_roc['roc'] = (df.close - df.close.shift(n))/df.close.shift(n) * 100_roc['rocma'] = _ma(_roc.roc, m)return _roc

VROC指标

def vroc(df, n=12):_vroc = pd.DataFrame()_vroc['date'] = df['date']_vroc['vroc'] = (df.volume - df.volume.shift(n)) / df.volume.shift(n) * 100return _vroc

CR指标

def cr(df, n=26):_cr = pd.DataFrame()_cr['date'] = df.date# pm = ((df['high'] + df['low'] + df['close']) / 3).shift(1)pm = (df[['high', 'low', 'close']]).mean(axis=1).shift(1)_cr['cr'] = (df.high - pm).rolling(n).sum()/(pm - df.low).rolling(n).sum() * 100return _cr


PSY指标

def psy(df, n=12):_psy = pd.DataFrame()_psy['date'] = df.datep = df.close - df.close.shift()p[p <= 0] = np.nan_psy['psy'] = p.rolling(n).count() / n * 100return _psy


最后的量化结果

由于篇幅和展示不便,不在文章中展示可视化的买入卖出点位以及资金变动曲线

为了最简洁的了解策略效果,初始资金设置为10000元,并且为了简便不考虑必须整手买入的限制,每次都10000元全部买入,测试五种指标策略效果的同时测试2020.1.1买入并持有到2021.1.15的策略,比较最后资金多少来衡量策略效果

HOLD行是表示2020.1.1买入并持有到2021.1.15的策略最后的资金
在这里插入图片描述

数据可视化在这里不作展示,有数据后可以按照自己的习惯绘图制表;更多的评估数据也不作展示

结果中很多策略最后的收益都不如一直持有的收益高,但是策略没有持股的时候作为交易员当然会寻找新的机会,创造收益!

这篇关于不知如何选股?不知哪种指标策略可靠?量化分析比较DBCD、ROC、VROC、CR、PSY指标策略收益情况的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282238

相关文章

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意