不知如何选股?不知哪种指标策略可靠?量化分析比较DBCD、ROC、VROC、CR、PSY指标策略收益情况

本文主要是介绍不知如何选股?不知哪种指标策略可靠?量化分析比较DBCD、ROC、VROC、CR、PSY指标策略收益情况,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

从股票市场开始到现在,已经研究出了众多的指标,但是在使用的时候会发现,由于第二天股价的未知波动,指标显示的情况并不一定每次都准确,总是会存在误判的情况。对于这种不可避免的情况而言,我们只能想办法将其量化、计算根据策略操作后的收益率、估计误判的概率等

本文先选择了 DBCD、ROC、VROC、CR、PSY 五种指标来量化(一共会考虑了三十多种指标,由于篇幅问题一次讨论五种),然后用十支股票来测试这五种策略的效果实际情况是用了 3600+ 股票来统计策略效果,目前不方便展示结果

免责声明

此构想和分析中的任何内容均不应解释为投资建议,过去的表现并不一定表示未来的结果。

指标策略量化分析

  • 前言
  • 免责声明
  • 数据准备
  • 指标介绍
    • DBCD指标
    • ROC指标
    • VROC指标
    • CR指标
    • PSY指标
  • 最后的量化结果



数据准备

选择了 600519 贵州茅台、600031 三一重工、002594 比亚迪、601633 长城汽车、002074 国轩高科、300750 宁德时代、300014 亿纬锂能、000591 太阳能、002475 立讯精密、600862 中航高科 这十支股票 2020年1月1日 ~ 2021年1月15日 的数据来测试

部分代码片段

import pandas_datareader.data as web
import datetimestart = datetime.datetime(2020, 1, 1)
end = datetime.datetime(2021, 1, 15)
df = web.DataReader(ticker, "yahoo", start, end)


指标介绍

sma是平滑移动指标的计算函数
_ma是移动平均线的计算函数
_md是标准差的计算函数
_ema是指数移动平均线的计算函数

DBCD指标

def dbcd(df, n=5, m=16, t=76):_dbcd = pd.DataFrame()_dbcd['date'] = df.dateman = _ma(df.close, n)_bias = (df.close - man) / man_dif = _bias - _bias.shift(m)_dbcd['dbcd'] = sma(_dif, t)_dbcd['mm'] = _ma(_dbcd.dbcd, n)return _dbcd

ROC指标

def roc(df, n=12, m=6):_roc = pd.DataFrame()_roc['date'] = df['date']_roc['roc'] = (df.close - df.close.shift(n))/df.close.shift(n) * 100_roc['rocma'] = _ma(_roc.roc, m)return _roc

VROC指标

def vroc(df, n=12):_vroc = pd.DataFrame()_vroc['date'] = df['date']_vroc['vroc'] = (df.volume - df.volume.shift(n)) / df.volume.shift(n) * 100return _vroc

CR指标

def cr(df, n=26):_cr = pd.DataFrame()_cr['date'] = df.date# pm = ((df['high'] + df['low'] + df['close']) / 3).shift(1)pm = (df[['high', 'low', 'close']]).mean(axis=1).shift(1)_cr['cr'] = (df.high - pm).rolling(n).sum()/(pm - df.low).rolling(n).sum() * 100return _cr


PSY指标

def psy(df, n=12):_psy = pd.DataFrame()_psy['date'] = df.datep = df.close - df.close.shift()p[p <= 0] = np.nan_psy['psy'] = p.rolling(n).count() / n * 100return _psy


最后的量化结果

由于篇幅和展示不便,不在文章中展示可视化的买入卖出点位以及资金变动曲线

为了最简洁的了解策略效果,初始资金设置为10000元,并且为了简便不考虑必须整手买入的限制,每次都10000元全部买入,测试五种指标策略效果的同时测试2020.1.1买入并持有到2021.1.15的策略,比较最后资金多少来衡量策略效果

HOLD行是表示2020.1.1买入并持有到2021.1.15的策略最后的资金
在这里插入图片描述

数据可视化在这里不作展示,有数据后可以按照自己的习惯绘图制表;更多的评估数据也不作展示

结果中很多策略最后的收益都不如一直持有的收益高,但是策略没有持股的时候作为交易员当然会寻找新的机会,创造收益!

这篇关于不知如何选股?不知哪种指标策略可靠?量化分析比较DBCD、ROC、VROC、CR、PSY指标策略收益情况的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282238

相关文章

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念