2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序

本文主要是介绍2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2017年亚太杯APMCM数学建模大赛

B题 喷雾轨迹规划问题

原题再现

  喷釉工艺用喷釉枪或喷釉机在压缩空气下将釉喷入雾中,使釉附着在泥体上。这是陶瓷生产过程中一个容易实现自动化的过程。由于不均匀的釉料在烧制过程中会产生裂纹,导致工件报废,因此要求喷涂过程中喷涂的釉料厚度尽可能均匀。

  在实际的空气喷涂中,压缩空气通常布置在喷枪嘴的两侧,雾锥被挤压成椭圆锥,漆雾形成的喷雾锥覆盖的平面上的区域是椭圆,半长轴为a,半短轴为b,如图1所示。
在这里插入图片描述
  它在椭圆分布区域中满足椭圆双β分布模型:
在这里插入图片描述
  式中:a——喷淋椭圆半长轴(mm);b——喷淋椭圆的半短轴(mm);maxz——漆膜最大厚度;β1−x方向截面β分布指数;β2−y方向截面中β分布的指数。
  有研究表明,雾化压力P1、隔膜泵压力P2和喷雾距离h是影响上述参数的主要因素,它们之间的关系如下:
在这里插入图片描述
  上述模型为单点喷枪喷涂模型。然而,在实践中,喷枪需要沿着计划的路径移动,以便要喷涂的工件表面均匀地覆盖釉,如图2所示。
在这里插入图片描述
  由于单点喷涂时,雾锥区域厚度中间偏大,两侧偏薄,为保证喷涂表面均匀,雾锥将在图3中相邻路径重叠。
在这里插入图片描述
  基于上述背景,我们尝试探讨以下四个问题:

  1、根据以上资料,如果喷枪的喷涂方向始终保持不变(如图4所示),请计算平面内喷涂的累积情况,找出喷枪轨迹的合适重叠间隔(P1和P2取0.2Mpa,h取225mm)。
在这里插入图片描述
  2、对于曲面z=−x~2+x−xy(−10≤x≤10,−10≤y≤10),确定问题1中计算的喷涂间隔是否适用。如果没有,请重新规划喷枪轨迹,并计算重叠间隔,使釉面厚度差小于10%(不同轨迹的间隔可以不同,P1和P2取0.2Mpa,h可根据实际需要选择)。

  3、喷涂过程中,如果喷枪的喷涂方向始终是雾锥中心(如图5所示)喷涂点的法线方向,其他条件不变,请重新计算问题2的结果。
在这里插入图片描述
  4、问题3的结果是否适用于任何曲面z=f(x,y)?喷涂路径规划是否有通用解决方案

整体求解过程概述(摘要)

  机器人上釉作为提高陶瓷生产过程自动化程度的一种新方法,对提高上釉效率有一定的作用。因此,探索机器人釉料在不同工件表面条件下的自动轨迹规划对提高陶瓷工艺现代化水平具有重要意义。

  平面釉料自动轨迹规划:首先,将微积分法与椭圆双β分布模型相结合,建立以釉料厚度均匀性为目标的平面釉料轨迹优化模型。最后,对不同横截面的釉膜厚度模型进行仿真分析,验证了模型的正确性。

  曲面(垂直于水平方向)施釉轨迹规划:首先,采用投影法对椭圆双β分布模型进行修正,得到施釉方向垂直于水平方向时曲面的釉膜厚度分布模型

  确定方向。然后,建立曲面轨道优化模型,对最小釉厚差进行优化。最后证明了问题1的重叠区间不适用于问题2的曲面,问题2的重叠区间d的最优解为89.36~95.05mm。

  曲面(沿喷点法向)施釉轨迹规划:首先采用投影法修正平面椭圆双β分布模型,建立喷釉方向为雾锥中心喷点法向时的釉膜厚度分布模型。然后,基于切片算法,以涂层均匀性为优化目标,建立了表面喷釉轨迹优化模型。最后证明了曲面重叠间隔d的最优解为80.26~90.53mm。

  任意曲面釉面轨迹规划:首先利用β角、θ角、喷枪高度等参数描述不同曲面之间的差异。通过改变不同的地面观测参数,重复发射装置的参数。最后,采用黄金分割迭代法求出d值,并编制了任意面釉轨迹规划程序。通过MATLAB仿真验证了模型的正确性,结果符合标准。

模型假设:

  ➢ 边缘厚度对喷涂层厚度分布模型没有影响。

  ➢ 喷涂机器人喷涂一定高度,不改变。

  ➢ 机器人在涂布过程中的速度恒定,没有突变。

问题重述:

  问题背景

  喷釉是陶瓷生产工艺的重要组成部分,由于釉面不均匀在烧成过程中会产生裂纹,导致零件报废,因此喷釉工艺要求喷釉尽可能厚,同时也降低了效率。

  机器人上釉的出现为提高上釉效率提供了一条新途径,对提高陶瓷生产过程的自动化具有重要意义。

  我们的工作

  ➢ 分析了机器人喷釉的平面釉厚度分布,设计了平面釉自动轨迹优化方案。

  ➢ 探讨了机器人搪瓷上釉方向与水平方向垂直时曲面上釉膜厚度的分布情况,建立了该条件下曲面上釉的自动轨迹优化方案。

  ➢ 研究了沿锥体法向喷涂的锥体曲面上釉膜厚度的分布。建立了该条件下表面施釉自动轨迹的优化方案。

  ➢ 探究工件表面是否为任意曲面,是否有通用的自动喷釉机器人优化方案来解决喷釉路径规划问题。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
[x,y]=meshgrid(-10:1:10);
z=-x.^2+x-x.*y;
mesh(x,y,z);
title('curved surface z')
xlabel('X');
ylabel('Y');
zlabel('Z');
[x,y]=meshgrid(-10:1:10);
z=-x.^2+x-x.*y;
mesh(x,y,z);
title('curved surface z')
xlabel('X');
ylabel('Y');
zlabel('Z');
hold on
ezmesh('0')
A=[129.8665 -55.2435 1.7436 -297.3908;52.5130 -5.7480 0.7394 -128.6368;59.7245 393.9655 -0.1244 150.0184;-7.0125 34.5045 0.0284 -9.5229;-4.6130 18.3620 0.0113 -0.3924];
B=[0.2 0.2 225 1];
C=A*B'
a=C(1);
b=C(2);
Zmax=C(3);
beta1=C(4);
beta2=C(5);
Zmin1=Zmax*(1-(a^2/b^2))^(beta2-1);
y1=sqrt((b^2)*(1-exp((1/(beta2-1))*log((Zmax-Zmin1)/Zmax))));
d1=abs(a-y1);
Zmin2=Zmax*(1-b^2/a^2)^(beta1-1);
x2=sqrt((a^2)*(1-exp((1/(beta1-1))*log((Zmax-Zmin2)/Zmax))));
d2=abs(b-x2);
A=[129.8665 -55.2435 1.7436 -297.3908;52.5130 -5.7480 0.7394 -128.6368;59.7245 393.9655 -0.1244 150.0184;-7.0125 34.5045 0.0284 -9.5229;-4.6130 18.3620 0.0113 -0.3924];
B=[0.2 0.2 225 1];
C=A*B';
a=C(1);
b=C(2);
Zmax=C(3);
beta1=C(4);
beta2=C(5);
Zmin1=Zmax*(1-(a^2/b^2))^(beta2-1);
y1=sqrt((b^2)*(1-exp((1/(beta2-1))*log((Zmax-Zmin1)/Zmax))));
d1=abs(a-y1);
Zmax=C(3);
Z1=Zmax
z=-1+1-(a-d1+1);
h1=0-z;
h=B(3)+h1;
B1=[0.2 0.2 h 1];
C1=A*B1';
a1=C1(1);
b1=C1(2);
Zmax=C1(3);
beta1=C1(4);
beta2=C1(5);
Z2=Zmax*(1-1/a1^2)^(beta1-1)*(1-(a-d1+1)^2/(b1^2*(1-1/a1^2)))^(beta2-
1);
if Z1==Z2fprintf('the overlap interval is suitable')
elsefprintf('the overlap interval isn’t suitable')
end
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

这篇关于2017年亚太杯APMCM数学建模大赛B题喷雾轨迹规划问题求解全过程文档及程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281979

相关文章

win10安装及配置Gradle全过程

《win10安装及配置Gradle全过程》本文详细介绍了Gradle的下载、安装、环境变量配置以及如何修改本地仓库位置,通过这些步骤,用户可以成功安装并配置Gradle,以便进行项目构建... 目录一、Gradle下载1.1、Gradle下载地址1.2、Gradle下载步骤二、Gradle安装步骤2.1、安

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个