吃货眼中的sqlalchemy外键和连表查询

2023-10-25 09:59

本文主要是介绍吃货眼中的sqlalchemy外键和连表查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

使用数据库一个高效的操作是连表查询,一条查询语句能够查询到多个表的数据。在sqlalchem架构下的数据库连表查询更是十分方便。那么如何连表查询?以及数据库外键对连表查询有没有帮助呢?本篇文章就这两个问题简单解释。

 

建表

俗话说巧妇难为无米之炊,连表查询肯定要有表,有数据库啊。那有没有数据库是你见了垂涎三尺的呢?中国文化博大精深,饮食文化更是璀璨的明珠。我们就以中国菜系为话题,讲一讲好吃的,顺便再说一说外键和连表查询。

 

 

鲁菜  山东菜系,而且在明清两代,宫廷御膳是以鲁菜为主,鲁菜味道浓厚,喜欢葱蒜,以海鲜、汤菜和内脏为主。因为鲁菜对其他菜系的影响颇大,所以鲁菜为八大菜系之首。代表:糖醋鲤鱼

 

川菜 四川菜系,以成都和重庆两地菜系为主,特点是酸、甜、麻、辣、香,川菜中有五大名菜:回锅肉、水煮肉片、麻婆豆腐、宫保鸡丁、鱼香肉丝。川菜太好吃了,名菜超多。

 

 

 

 苏菜 江苏地方风味菜,由扬州、南京、苏州三地的地方菜发展而成,是宫廷第二大菜系,今天国宴仍以苏菜为主。其中扬州菜亦称淮扬菜,因受本地自然资源影响,菜色四季有别,讲究配色以及烹饪技巧。代表作:盐水鸭,松鼠桂鱼

 

 

粤菜。就是广东菜系,在国外的中国菜馆是以粤菜为主的。粤菜分为潮汕风味、广府风味以及客家风味,又以广府风味为代表。广东地域物产丰富且新鲜,而且讲究季节性。选材要在食物的最佳的时节,做法追求食材的原汁原味,不像川菜那样破坏了食材原来的鲜味。代表作:白斩鸡

 

那么就以上面提到的信息来建两张表。 

food表:                                                                 

菜系地区
鲁菜山东
川菜成都
苏菜南京
粤菜珠三角

 

 

 

 

 

 

 

 

 famous表:

 菜系                           代表
 鲁菜糖醋鲤鱼 
 川菜 鱼香肉丝、宫保鸡丁、水煮肉片
苏菜 松鼠桂鱼、盐水鸭
粤菜  白斩鸡

 

 

 

 

 

 

 

 

 

不带外键的两张表:

model.py

 

#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String,DATE,ForeignKey,CHAR #导入外键
from sqlalchemy.orm import  relationship  #创建关系
 
engine = create_engine("mysql+mysqldb://root:12345678@localhost:3306/test?charset=utf8",encoding="utf-8")Base = declarative_base() #生成orm基类class Food(Base):__tablename__ = "food"name = Column(CHAR(20),primary_key = True)location = Column(CHAR(20))def __repr__(self):return "name:{0} location:{1}".format(self.name,self.location) class Famous(Base):__tablename__ = 'famous'id = Column(Integer,primary_key = True)food_name = Column(CHAR(20))famous_dish = Column(CHAR(20))def __repr__(self):return "id:{0} food_name:{1} famous_dish:{2}".format(self.id,self.food_name,self.famous_dish) Base.metadata.create_all(engine) #创建表

 

 

写入数据 

写入数据: 

#coding:utf-8from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine,Column
from model import Food,Famous

#中文在命令行中显示为16进制编码,所以用拼音代替,懂这个意思就行。 food
= {u"lu":u"shandong",u"chuan":u"chengdu",u"su":u"nanjing",u"yue":u"zhusanjiao"}famous = [{u'lu':u'tangculiyu'},{u'chuan':u'yuxiangrousi'},{u'chuan':u'gongbaojiding'},{u'chuan':u'shuizhuroupian'},{u'su':u'songshuguiyu'},{u'su':u'yanshuiya'},{u'yue':u'baizhanji'}] engine = create_engine('mysql+mysqldb://root:12345678@localhost:3306/test?charset=utf8') DBSession = sessionmaker(bind=engine) session = DBSession()for key in food:new_food = Food(name=key,location=food[key]) session.add(new_food) session.commit()for dish in famous:new_famous = Famous(food_name=dish.keys()[0],famous_dish=dish.values()[0])session.add(new_famous) session.commit()session.close()

 

 

 

这里有一点值得注意一下,famous的外键是food_name字段,指向的是food表中主键name字段。并且这里的对应关系是1对多的。在famous表中的food_name字段重复出现了,但值只有4种。这里就是外键的特性之一:

外键对应主表的主键,外键值可以是空,可以多个对1个,但一定要在主表中主键的值里。

有关外键的具体内容可以参考前面一篇 sqlalchemy外键和relationship查询

 

查询

 select.py

#coding:utf-8from sqlalchemy.orm import  sessionmaker
from sqlalchemy import create_engine
from model import *#修改用户名、密码和数据库的名称为自己的
engine = create_engine("mysql+mysqldb://root:12345678@localhost:3306/test",)
Session_class = sessionmaker(bind=engine)
session = Session_class()query = session.query(Food).join(Famous).all()for x in query:print x

 

在没有外键关联的情况下对查询是有一定的影响的,没有外键关联的情况下,直接join连表,而不指明连表的字段就会报错,因为sqlalchemy连表查询没有外键自动关联两张表。

query = session.query(Food).join(Famous).all()

 

这个时候就需要在使用join连表时指明两张表连接的字段。

query = session.query(Food,Famous).join(Famous,Famous.food_name==Food.name).all() 

 

带外键的表

因为不带外键的表查询时没有直接关联,所以下面使用带外键的表来看是否有优化?

#coding:utf-8from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String,DATE,ForeignKey,CHAR #导入外键
from sqlalchemy.orm import  relationship  #创建关系
 
engine = create_engine("mysql+mysqldb://root:12345678@localhost:3306/test?charset=utf8",encoding="utf-8")Base = declarative_base() #生成orm基类class Food(Base):__tablename__ = "food"name = Column(CHAR(20),primary_key = True)location = Column(CHAR(20))def __repr__(self):return "name:{0} location:{1}".format(self.name,self.location) class Famous(Base):__tablename__ = 'famous'id = Column(Integer,primary_key = True)food_name = Column(CHAR(20),ForeignKey('food.name'))food = relationship("Food",backref="dish_belong_food") famous_dish = Column(CHAR(20))def __repr__(self):return "id:{0} food_name:{1} famous_dish:{2}".format(self.id,self.food_name,self.famous_dish) Base.metadata.create_all(engine) #创建表

 

加了外键的famous表,从其建表的sql来看有一条外键记录,连接到food表中的name字段。

 

 

有外键关联的表,能够直接join表,sqlalchemy会自动用外键关联这两张表,这就是sqlalchemy对查询做出的优化。 

query = session.query(Food,Famous).join(Famous).all()

 

连表查询

数据库连表有很多中操作,有全连接,左连接,右连接。在这些连接方式中,最基础的是全连接,看一下全连接的威力。

query = session.query(Food,Famous).all()

 

 
直接查询两张表,这时查询结果是返回被连接的两个表的笛卡尔积。将两张表看做是两个列表,全连接的方式类似如下的列表乘积。

                                    

 

 

在前面使用的join连接则是一种内连接。将两张表里相同的部分连接在一起,内连接的方式如下:

query = session.query(Food,Famous).join(Famous,Famous.food_name==Food.name).all()

 

                      

 

使用join的方式可以将多张表连在一起,不仅限于2张表,如果这里有还有一张介绍每一种美食的做法的一张表叫做Cook的话,将三种表连起来的写法:

query = session.query(Food,Famous,Cook).join(Famous,Famous.food_name==Food.name).join(Cook,Cook.famous_name==Famous.famous).all()

 

只要表与表之间有关联,那么就能用join的方式将表连接在一起,前提是一定要有字段是有关联的,如果连接两张毫无干系的表,那查询结果肯定是空。 

在实际的使用过程中,将想要查询的表关联起来是第一步,还有一步也很重要,那就是过滤,筛选出我们需要的字段。而筛选在sqlalchemy中使用的是filter这个关键字。例如,想要筛选出所有苏菜里的好吃的,可以这么写:

query = session.query(Food,Famous).join(Famous,Famous.food_name==Food.name).filter(Food.name=='su').all()

 

filter的作用就是从得到连表所有的数据里过滤出我们感兴趣的数据。filte之前,我们得到的数据是这样的:

 

而使用了filter之后,从上面的结果中将food表中name字段为'su'的数据过滤出来,便是如下的数据:

  

同时还可以多级过滤,可以在前面的基础上再次过滤。比如说,我就爱吃鸭子,我在南京的美食找一找有没有和鸭子有关的好吃的,写法如下:

query = session.query(Food,Famous).join(Famous,Famous.food_name==Food.name).filter(Food.name=='su').filter(Famous.famous_dish.like('%ya%')).all()

 

结果如下,真的找到一条记录,盐水鸭,这是南京人民的最爱啊,能把鸭子吃出花来,就像有人调侃说没有一只鸭子能走出南京!('-')

 

总结

所以总结一下在sqlalchemy中如何得心应手,随心所欲的过滤出自己想要的数据:

1.找到你想要查询的数据的表

2.看看你手里有什么数据

3.确定手里的数据和你要查询的数据之间有直接关系还是有间接关系

4.将有关联的表连接起来(join ,连接相关的表)

5.从得到的数据中过滤出里感兴趣的数据(filter 过滤出你需要的数据)

 

通用公式

query 负责你要查询的结果的字段信息

join 负责你的连表操作,可以有多个join

filetr 负责过滤你感兴趣的数据,或者符合条件的数据才能被query展示 

 

看到这里可能有好奇宝宝会问,不是还有一个all吗?这是什么意思呢?这个就是sqlalchemy的关键字了,具体参考前面的sqlalchemy关键字使用篇 。

转载于:https://www.cnblogs.com/goldsunshine/p/11433164.html

这篇关于吃货眼中的sqlalchemy外键和连表查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281796

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

MySQL慢查询工具的使用小结

《MySQL慢查询工具的使用小结》使用MySQL的慢查询工具可以帮助开发者识别和优化性能不佳的SQL查询,本文就来介绍一下MySQL的慢查询工具,具有一定的参考价值,感兴趣的可以了解一下... 目录一、启用慢查询日志1.1 编辑mysql配置文件1.2 重启MySQL服务二、配置动态参数(可选)三、分析慢查