基于python 自写Tobii VI-T滤波器

2023-10-25 09:40
文章标签 python 滤波器 vi tobii 自写

本文主要是介绍基于python 自写Tobii VI-T滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 官网参考文档
      • Gap fill-in interpolation
      • Eye selection
      • Noise reduction
      • Velocity calculator
      • I-VT classifier
      • Merge adjacent fixations
      • 官方文档
    • python 代码
    • GITHUB c代码

官网参考文档

Tobii的默认注视点滤波器是I-VT,官方给出了参考文档《The Tobii I-VT Fixation Filter》。今天学习了一下,这里做个笔记。
主要看第三小节“The Tobii Studio implementation of the Tobii I-VT filter”的内容,简单概述I-VT滤波器的基本操作流程:内插fixations=>眼动位置确定=>降噪处理=>速度计算=>分类=>临近注视区合并。
整个流程的关键参数就在下面这张图中,下面分别介绍具体操作流程:
在这里插入图片描述

Gap fill-in interpolation

主要目的是将一些missing的fixations通过内插的方式填补上,关键的参数‘Max gap length’。为避免将一些由于被试眨眼,转头和遮挡等非采取误差导致数据填补,系统默认设置Max gap length小于正常眨眼的时间,一般为75mm。(通常2~6秒就要眨眼一次,每次眨眼要用0.2~0.4秒钟时间
对于数据的填补就是简单线性内插即可。
在这里插入图片描述

Eye selection

相对很好理解,由于采集的两只眼的眼动信息,需要选取以哪只眼的fixations位置为准。可选择的有左右眼,以及平均。我们选择avarage就好,即两只眼都采集到数据时去两者位置的平均,只有一只眼时只取一只眼的数据。

Noise reduction

Tobii采用的non-weighted moving-average filter,也是一个很好理解的滤波方式,即连续取某一个时刻前N和后N个样本点,取平均位置。

y [ n ] = 1 2 ∗ N + 1 ∑ k = − N N x [ n − k ] y[n]=\frac{1}{2 * N+1} \sum_{k=-N}^{N} x[n-k] y[n]=2N+11k=NNx[nk]
显然样本点的个数将直接影响fixations的位置曲线,样本点越多曲线越平滑,对应的眼动速度也越低。这样操作虽然能消除噪音的影响也会对影响数据准确度,所以需要合适选取数据。
采样时间间隔乘以N需要远小于眼跳的时间间隔。
在这里插入图片描述
相比均值降噪,中位数降噪能减少对过度区域的过平滑操作。
在这里插入图片描述

Velocity calculator

为方便分类阈值的设定,这里眼动速度一般采用视角,桌面式的眼动仪器因为知道被试与刺激物的纵向距离,视角便可以方便计算得到。
在这里插入图片描述
视角速度的计算就是两个注视点的距离除以一个时间间隔,其中window length需要进行合理设置,经验选取20ms可以有效降噪且避免打乱数据。

v t 1 t 2 = ∣ s t 1 − s t 2 ∣ ∣ t 1 − t 2 ∣ v_{t_{1} t_{2}}=\frac{\left|s_{t_{1}}-s_{t_{2}}\right|}{\left|t_{1}-t_{2}\right|} vt1t2=t1t2st1st2

I-VT classifier

接下来就是根据velocity threshold对注视点进行分类了,默认设置为30°/s。但是根据数据的信噪比,需要合理调整阈值。每秒的眼跳次数为2-5次,眼跳持续时间10-100ms,一次注视的时间约200-500ms,可据此检验阈值设置的可靠性。比如下图左侧,噪声较多,阈值需要设置大一些,右侧噪声少,阈值设当设置小一些。
在这里插入图片描述

Merge adjacent fixations

对于临近的注视点处理,主要基于三个参数:
max time between fixations: 75ms(大约75超过眼跳,应该时眨眼等行为)
max angle between fixations: 0.5°(小于这个数值,合并)
merge adjacent fixations: 60ms (小于一次注视的时长合并)
意思都很好理解了,提出的机理是根据文献中人的行为特点决定的,比如最后一个参数注视时长是人视觉观察物体,并提取关键信息所必须的最短时长。
至此便完成了对眼动数据的滤波处理。

官方文档

https://www.tobiipro.com/learn-and-support/learn/steps-in-an-eye-tracking-study/data/how-are-fixations-defined-when-analyzing-eye-tracking-data/

python 代码

粗略写了一个,后续再更新

import matplotlib as mpl 
import glob, os, cv2, time
import json, csv, math
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import signal
import matplotlib.gridspec as gridspec
import matplotlibmatplotlib.rcParams['font.size'] = 16
matplotlib.rcParams['figure.titlesize'] = 16
# matplotlib.rcParams['figure.figsize'] = figsz
matplotlib.rcParams['font.family'] = ['Times New Roman']
matplotlib.rcParams['axes.unicode_minus']=Falsedef read_json(json_file):with open (json_file, 'r') as f:res_data = json.load(f)return res_datadef get_fixation_list(fixation_dict):# 删除最后一帧画面的眼动fixation_dict.pop('frame{:0>6}'.format(len(fixation_dict)-1))fixations=[]for key, fix in fixation_dict.items():fixations.extend(fix)return fixationsclass Tobii_IVT_filter():'''filter_mode: fixation/attention/user_define'''def __init__(self, sample_fps,filter_mode, seating_dis=650, screen= (527.1, 296.5),resolution=[1280,720], **filter_kwargs):self.sample_fps = sample_fpsself.filter_mode=filter_modeself.seat_dis = seating_disself.resolution=resolutionself.screen_w = screen[0]self.screen_h = screen[1]if filter_mode=='fixation':self.fixation_filter()elif filter_mode=='attention':self.attention_filter()else:self.user_defined_filter(**filter_kwargs)def fixation_filter(self, ):self.max_gap_length=75self.noise_window_size=3self.velocity_window_size=20self.velocity_threshold=30self.merge_max_time=75self.merge_max_angle=0.5self.discard_min_duration=60def attention_filter(self, ):self.max_gap_length=75self.noise_window_size=3self.velocity_window_size=20self.velocity_threshold=100self.merge_max_time=75self.merge_max_angle=0.5self.discard_min_duration=60def user_defined_filter(self, **filter_kwargs):self.max_gap_length=filter_kwargs['max_gap_length']self.noise_window_size=filter_kwargs['noise_window_size']self.velocity_window_size=filter_kwargs['velocity_window_size']self.velocity_threshold=filter_kwargs['velocity_threshold']self.merge_max_time=filter_kwargs['merge_max_time']self.merge_max_angle=filter_kwargs['merge_max_angle']self.discard_min_duration=filter_kwargs['discard_min_duration']def filter_process(self,fixations):fixations_gap=self.GapFill(fixations)fixations_merge=self.MovingMedian(fixations_gap)# self.scatter_plot1([np.array(fixations), np.array(fixations_gap),#                 np.array(fixations_merge)])velocity_list = self.VelocityCal(fixations_merge)self.scatter_plot2(velocity_list)self.FixClassifier(fixations_merge, velocity_list)def GapFill(self, fixations):# 小于interval_num 需要内插interval_num = self.sample_fps*self.max_gap_length/1000fix_len = len(fixations)nan_index = np.isnan(fixations)[:,0]# FT定义为开始 TF定义为结束start_idx, end_idx = [], []for ii in range(fix_len-2):if (nan_index[ii] == False) & \(nan_index[ii+1] == True) :start_idx.append(ii)if (nan_index[ii] == True) & \(nan_index[ii+1] == False):end_idx.append(ii)for start, end in zip(start_idx, end_idx):# print('start_idx:{}, end_idx:{}'.format(start, end), \#     nan_index[start:end+2])# print('start_idx:{}, end_idx:{}'.format(start, end), \#     'fixation_array:',fixations[start:end+2])nan_len = end-startif nan_len<interval_num:px = [fixations[start][0], fixations[end+1][0]]py = [fixations[start][1], fixations[end+1][1]]interx = ((px[1]-px[0])*np.arange(nan_len+1)/float(nan_len+1)+px[0]).tolist()intery = ((py[1]-py[0])*np.arange(nan_len+1)/float(nan_len+1)+py[0]).tolist()# fixations[]for ii in range(1, len(interx)):fixations[start+ii]=[interx[ii], intery[ii]]# print('\n Post: start_idx:{}, end_idx:{}'.format(start, end), \#     'fixation_array:',fixations[start:end+2])return fixationsdef MovingMedian(self, fixations):fixations = np.array(fixations)num = self.noise_window_sizefor ii in range(num, len(fixations)-num):fix_slice = fixations[ii-num: ii+num+1]det_x = fix_slice[:,0].max()-fix_slice[:,0].min()det_y = fix_slice[:,1].max()-fix_slice[:,1].min()if det_x>det_y: median_idx = np.argsort(fix_slice[:,0])[num]else: median_idx = np.argsort(fix_slice[:,1])[num]fixations[ii,:] = fix_slice[median_idx,:]return fixations.tolist()def angle_pixel(self, ):angle_h = math.degrees(math.atan2(self.screen_h, self.seat_dis))angle_w = math.degrees(math.atan2(self.screen_w, self.seat_dis))angle_h_pixel = angle_h/self.resolution[1]angle_w_pixel = angle_w/self.resolution[0]return angle_h_pixeldef VelocityCal(self, fixations):fixations = np.array(fixations)fixations[:,0] = fixations[:,0]*1280fixations[:,1] = fixations[:,1]*720num = int(self.sample_fps*self.velocity_window_size/1000)angle_h_pixel = self.angle_pixel()vel_list = []for ii in range(len(fixations)-num):# 换算成像素start = np.array(fixations[ii])end = np.array(fixations[ii+num])dist = np.sqrt(sum(np.power((end - start), 2)))vel = dist*angle_h_pixel*1000/self.velocity_thresholdvel_list.append(vel)return vel_listdef FixClassifier(self, fixations, velocity):fixations = np.array(fixations)fixations[:,0] = fixations[:,0]*1280fixations[:,1] = fixations[:,1]*720velocity = np.array(velocity)# nan替换为100,不替换nan比任何数都笑index = np.where(np.isnan(velocity)==True)velocity[index]=100fix_idx = velocity>self.velocity_threshold# FT定义为开始 TF定义为结束start_idx, end_idx = [], []for ii in range(len(velocity)-1):if (fix_idx[ii] == False) & \(fix_idx[ii+1] == True) :start_idx.append(ii)if (fix_idx[ii] == True) & \(fix_idx[ii+1] == False):end_idx.append(ii)num_fixation = len(start_idx) print('number fixations:', num_fixation)# max angleangle_h_pixel = self.angle_pixel()max_angle=[]for start, end in zip(start_idx, end_idx):point_s = fixations[start]point_e = fixations[end]dist = np.sqrt(sum(np.power((point_e-point_s),\2)))*angle_h_pixelif dist<self.merge_max_angle:max_angle.append([start, end])print('less than max angle(0.5):', len(max_angle))# max time between fixations to remove blinksnum = int(self.sample_fps*self.merge_max_time/1000)num_blink=[]for start, end in zip(start_idx, end_idx):if end-start>num:# start_idx.remove(start)# end_idx.remove(end)num_blink.append([start,end])print('greater than blink(75ms) number:', len(num_blink))# print('number fixations:', len(start_idx))# minimum fixation durationnum = int(self.sample_fps*self.discard_min_duration/1000)num_short_fix = []for idx, start in enumerate (start_idx):if idx==0: end=0elif idx==len(start_idx): end=len(start_idx)else: end=start_idx[idx-1]if start-end<num:num_short_fix.append([end, start])print('shorter than fixation(60ms) number:', len(num_short_fix))def scatter_plot1(self, data):fig, ax = plt.subplots(figsize=(8,4.5))end = len(data[0])*(1/self.sample_fps)x = np.arange(0, end ,1/self.sample_fps)ax.plot(x, data[0], label=['raw_x', 'raw_y'])ax.plot(x, data[1], label=['gap_fill_x', 'gap_fill_y'])ax.plot(x, data[2], label=['merge_x', 'merge_y'])plt.legend()plt.show()def scatter_plot2(self, data):fig, ax = plt.subplots(figsize=(8,4.5))end = len(data)*(1/self.sample_fps)x = np.arange(0, end ,1/self.sample_fps)ax.plot(x, data, label='velocity')plt.show()if __name__ == '__main__':fixation_path = './postprocess_data/fixation.json'fixation_list = read_json(fixation_path)fixations = get_fixation_list(fixation_list)Filter = Tobii_IVT_filter(1200, 'fixation')Filter.filter_process(fixations)

在使用的过程中发现了一些小问题:

  1. 眼跳最大速度在阈值速度附近时候会出现一个眼跳多个开始结束点的情况;
  2. 眨眼的周围区间会出现大量失真的速度点,这些点会影响眼跳区间的确定;
  3. 以速度阈值确定的区间并不是眼跳的区间,需要进一步以更小的阈值确定正确的区间;
  4. 在数据噪声比较明显的时候,会出现开始和结尾不匹配成对的情况,因此相比上面先找出所有区间,再进行筛选的逻辑。更好准确的策略应该是一对对的找区间,确保每个区间的正确性。在这里插入图片描述

GITHUB c代码

https://github.com/uxifiit/GazeToolkit

这篇关于基于python 自写Tobii VI-T滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281695

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四