【点云处理技术之PCL】Octree

2023-10-25 09:20
文章标签 技术 处理 pcl 点云 octree

本文主要是介绍【点云处理技术之PCL】Octree,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 八叉树简介

八叉树是一种用于描述三维空间的树状数据结构,八叉树的每个节点表示一个正方体的体积元素,每个节点有八个子节点,将八个子节点所表示的体积元素加在一起就等于父节点的体积。

在这里插入图片描述
在这里插入图片描述

2. 点云的压缩

点云信息一般比较包含了丰富的信息而且点云数量也是比较多,这就需要我们对点云数据进行压缩。pcl中提供了点云压缩功能,而且还可以通过八叉树将两个不同的点云进行合并。

点云压缩的代码举例如下:

#include <pcl/point_cloud.h>                         // 点云类型
#include <pcl/point_types.h>                          //点数据类型
#include <pcl/io/openni_grabber.h>                    //点云获取接口类
#include <pcl/visualization/cloud_viewer.h>            //点云可视化类#include <pcl/compression/octree_pointcloud_compression.h>   //点云压缩类#include <stdio.h>
#include <sstream>
#include <stdlib.h>#ifdef WIN32
# define sleep(x) Sleep((x)*1000)
#endifclass SimpleOpenNIViewer
{
public:SimpleOpenNIViewer () :viewer (" Point Cloud Compression Example"){}
/************************************************************************************************在OpenNIGrabber采集循环执行的回调函数cloud_cb_中,首先把获取的点云压缩到stringstream缓冲区,下一步就是解压缩,它对压缩了的二进制数据进行解码,存储在新的点云中解码了点云被发送到点云可视化对象中进行实时可视化
*************************************************************************************************/void  cloud_cb_ (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr &cloud){if (!viewer.wasStopped ()){// 存储压缩点云的字节流对象// stringstream to store compressed point cloudstd::stringstream compressedData;// 存储输出点云// output pointcloudpcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloudOut (new pcl::PointCloud<pcl::PointXYZRGBA> ());// 压缩点云// compress point cloudPointCloudEncoder->encodePointCloud (cloud, compressedData);// 解压缩点云// decompress point cloudPointCloudDecoder->decodePointCloud (compressedData, cloudOut);// 可视化解压缩的点云// show decompressed point cloudviewer.showCloud (cloudOut);}}
/**************************************************************************************************************在函数中创建PointCloudCompression类的对象来编码和解码,这些对象把压缩配置文件作为配置压缩算法的参数所提供的压缩配置文件为OpenNI兼容设备采集到的点云预先确定的通用参数集,本例中使用MED_RES_ONLINE_COMPRESSION_WITH_COLOR配置参数集,用于快速在线的压缩,压缩配置方法可以在文件/io/include/pcl/compression/compression_profiles.h中找到,在PointCloudCompression构造函数中使用MANUAL——CONFIGURATION属性就可以手动的配置压缩算法的全部参数
******************************************************************************************************************/void run (){bool showStatistics = true;  //设置在标准设备上输出打印出压缩结果信息// 压缩选项详情在: /io/include/pcl/compression/compression_profiles.h// for a full list of profiles see: /io/include/pcl/compression/compression_profiles.hpcl::io::compression_Profiles_e compressionProfile = pcl::io::MED_RES_ONLINE_COMPRESSION_WITH_COLOR;// 初始化压缩和解压缩对象  其中压缩对象需要设定压缩参数选项,解压缩按照数据源自行判断// instantiate point cloud compression for encoding and decodingPointCloudEncoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> (compressionProfile, showStatistics);PointCloudDecoder = new pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA> ();/***********************************************************************************************************下面的代码为OpenNI兼容设备实例化一个新的采样器,并且启动循环回调接口,每从设备获取一帧数据就回调函数一次,,这里的回调函数就是实现数据压缩和可视化解压缩结果。************************************************************************************************************///创建从OpenNI获取点云的抓取对象// create a new grabber for OpenNI devicespcl::Grabber* interface = new pcl::OpenNIGrabber ();// 建立回调函数// make callback function from member functionboost::function<void(const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr&)> f = boost::bind (&SimpleOpenNIViewer::cloud_cb_, this, _1);//建立回调函数和回调信息的绑定// connect callback function for desired signal. In this case its a point cloud with color valuesboost::signals2::connection c = interface->registerCallback (f);// 开始接受点云的数据流// start receiving point cloudsinterface->start ();while (!viewer.wasStopped ()){sleep (1);}interface->stop ();// 删除压缩与解压缩的实例delete (PointCloudEncoder);delete (PointCloudDecoder);}pcl::visualization::CloudViewer viewer;pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudEncoder;pcl::io::OctreePointCloudCompression<pcl::PointXYZRGBA>* PointCloudDecoder;
};int main (int argc, char **argv)
{SimpleOpenNIViewer v;  //创建一个新的SimpleOpenNIViewer  实例并调用他的run方法v.run ();return (0);
}

3. 八叉树的搜索

octree是一种用于管理稀疏3D数据的树形数据结构,每个内部节点都正好有八个子节点,pcl中的octree搜索有三种方式:

  • 实现“体素内*邻搜索(Neighbors within VOxel Search)”
  • “K*邻搜索(K Nearest Neighbor Search)”
  • “半径内*邻搜索”(Neighbors within Radius Search)

代码示例如下:

#include <pcl/point_cloud.h>
#include <pcl/octree/octree_search.h>#include <iostream>
#include <vector>
#include <ctime>int main (int argc, char** argv)
{srand ((unsigned int) time (NULL));pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);// Generate pointcloud data//生成点云cloud->width = 1000;cloud->height = 1;cloud->points.resize (cloud->width * cloud->height);for (std::size_t i = 0; i < cloud->size (); ++i){(*cloud)[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);(*cloud)[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);(*cloud)[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);}float resolution = 128.0f;//设置octree体素分辨率pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree (resolution);//初始化八叉树octree.setInputCloud (cloud);//输入点云octree.addPointsFromInputCloud ();//构建八叉树pcl::PointXYZ searchPoint;//待搜索的点searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);// Neighbors within voxel search
/***********************体素内邻搜索********************************/std::vector<int> pointIdxVec;if (octree.voxelSearch (searchPoint, pointIdxVec)){std::cout << "Neighbors within voxel search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z << ")" << std::endl;for (std::size_t i = 0; i < pointIdxVec.size (); ++i)std::cout << "    " << (*cloud)[pointIdxVec[i]].x << " " << (*cloud)[pointIdxVec[i]].y << " " << (*cloud)[pointIdxVec[i]].z << std::endl;}// K nearest neighbor search
/***********************k近邻搜索********************************/int K = 10;std::vector<int> pointIdxNKNSearch;std::vector<float> pointNKNSquaredDistance;std::cout << "K nearest neighbor search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z<< ") with K=" << K << std::endl;if (octree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0){for (std::size_t i = 0; i < pointIdxNKNSearch.size (); ++i)std::cout << "    "  <<   (*cloud)[ pointIdxNKNSearch[i] ].x << " " << (*cloud)[ pointIdxNKNSearch[i] ].y << " " << (*cloud)[ pointIdxNKNSearch[i] ].z << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;}// Neighbors within radius search/***********************半径R搜索********************************/std::vector<int> pointIdxRadiusSearch;std::vector<float> pointRadiusSquaredDistance;float radius = 256.0f * rand () / (RAND_MAX + 1.0f);std::cout << "Neighbors within radius search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z<< ") with radius=" << radius << std::endl;if (octree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0){for (std::size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)std::cout << "    "  <<   (*cloud)[ pointIdxRadiusSearch[i] ].x << " " << (*cloud)[ pointIdxRadiusSearch[i] ].y << " " << (*cloud)[ pointIdxRadiusSearch[i] ].z << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;}
}

4. 无序点云数据集的空间变化检测

除了搜索功能,pcl中的八叉树还有一种功能,就是提取或检测两个点云数据集中,点云的非共同点云数据,也就是检测两个点云数据的变化部分。octree使用“双缓冲”技术实现这一功能。

代码示例:

#include <pcl/point_cloud.h>
#include <pcl/octree/octree_pointcloud_changedetector.h>#include <iostream>
#include <vector>
#include <ctime>int main (int argc, char** argv)
{srand ((unsigned int) time (NULL));// Octree resolution - side length of octree voxels//体素的大小float resolution = 32.0f;// Instantiate octree-based point cloud change detection classpcl::octree::OctreePointCloudChangeDetector<pcl::PointXYZ> octree (resolution);pcl::PointCloud<pcl::PointXYZ>::Ptr cloudA (new pcl::PointCloud<pcl::PointXYZ> );// Generate pointcloud data for cloudA//生成点云cloudAcloudA->width = 128;cloudA->height = 1;cloudA->points.resize (cloudA->width * cloudA->height);for (std::size_t i = 0; i < cloudA->size (); ++i){(*cloudA)[i].x = 64.0f * rand () / (RAND_MAX + 1.0f);(*cloudA)[i].y = 64.0f * rand () / (RAND_MAX + 1.0f);(*cloudA)[i].z = 64.0f * rand () / (RAND_MAX + 1.0f);}//输出cloudA// std::cout<<"cloudA:"<<std::endl;// for (const auto& point: *cloudA)//   std::cerr << "    " << point.x << " "//                       << point.y << " "//                       << point.z << std::endl;// Add points from cloudA to octreeoctree.setInputCloud (cloudA);octree.addPointsFromInputCloud ();// Switch octree buffers: This resets octree but keeps previous tree structure in memory.octree.switchBuffers ();//双缓冲pcl::PointCloud<pcl::PointXYZ>::Ptr cloudB (new pcl::PointCloud<pcl::PointXYZ> );// Generate pointcloud data for cloudB //生成点云cloudBcloudB->width = 128;cloudB->height = 1;cloudB->points.resize (cloudB->width * cloudB->height);for (std::size_t i = 0; i < cloudB->size (); ++i){(*cloudB)[i].x = 64.0f * rand () / (RAND_MAX + 1.0f);(*cloudB)[i].y = 64.0f * rand () / (RAND_MAX + 1.0f);(*cloudB)[i].z = 64.0f * rand () / (RAND_MAX + 1.0f);}//输出cloudB// std::cout<<"cloudB:"<<std::endl;// for (const auto& point: *cloudA)//   std::cerr << "    " << point.x << " "//                       << point.y << " "//                       << point.z << std::endl;// Add points from cloudB to octreeoctree.setInputCloud (cloudB);octree.addPointsFromInputCloud ();std::vector<int> newPointIdxVector;//索引// Get vector of point indices from octree voxels which did not exist in previous buffer// 获取前一cloudA对应八叉树在cloudB对应在八叉树中没有的点集octree.getPointIndicesFromNewVoxels (newPointIdxVector);// Output points//输出cloudB中,cloudA没有的点云std::cout << "Output from getPointIndicesFromNewVoxels:" << std::endl;for (std::size_t i = 0; i < newPointIdxVector.size (); ++i)std::cout << i << "# Index:" << newPointIdxVector[i]<< "  Point:" << (*cloudB)[newPointIdxVector[i]].x << " "<< (*cloudB)[newPointIdxVector[i]].y << " "<< (*cloudB)[newPointIdxVector[i]].z << std::endl;}

这篇关于【点云处理技术之PCL】Octree的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/281568

相关文章

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结

Python使用python-docx实现自动化处理Word文档

《Python使用python-docx实现自动化处理Word文档》这篇文章主要为大家展示了Python如何通过代码实现段落样式复制,HTML表格转Word表格以及动态生成可定制化模板的功能,感兴趣的... 目录一、引言二、核心功能模块解析1. 段落样式与图片复制2. html表格转Word表格3. 模板生