二分法题目:在有序数组中A内,查找数组中的某一个元素的下标(本题是从由小到大的顺序)

本文主要是介绍二分法题目:在有序数组中A内,查找数组中的某一个元素的下标(本题是从由小到大的顺序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二分查找算法,也称为折半查找算法,是一种在有序数组中查找特定元素的高效算法。它的基本思想是将查找的区间逐渐缩小,直到找到目标元素或者确定目标元素不存在。

算法步骤如下:

  1. 初始化:首先,确定数组的左右边界,通常初始时左边界为数组的起始索引,右边界为数组的末尾索引。

  2. 找到中间元素:计算左右边界的中间索引,然后取得该索引处的元素值。

  3. 比较中间元素

    • 如果中间元素等于目标值,查找成功,返回元素索引。
    • 如果中间元素大于目标值,说明目标值应该在左半边,将右边界移动到中间索引的左边一位。
    • 如果中间元素小于目标值,说明目标值应该在右半边,将左边界移动到中间索引的右边一位。
  4. 重复:在新的查找区间中,重复步骤2和步骤3,直到左边界大于右边界,此时查找失败,返回-1,或者返回指示元素不存在的其他值。

算法特点

  • 二分查找算法的时间复杂度是O(log n),其中n是数组的大小。这是因为每一次比较都将查找范围缩小为原来的一半。

  • 但是,二分查找算法要求输入的数据必须是有序的。如果数组无序,需要事先进行排序操作。

  • 由于二分查找每次将查找范围缩小为一半,因此它的效率非常高,尤其是在大型数据集中的查找操作。

  • 二分查找算法是一种迭代的算法,也可以使用递归实现。

Java版:

package LeetCode_1.Binary_search;
//小淼的算法之路//二分法题目:在有序数组中A内,查找数组中的某一个元素的下标(本题是从由小到大的顺序)public class Binary_search {//二分查找算法版本1.0public static int BinarySearchBasic(int[] a, int target){int i = 0,j = a.length -1;//设置指针和初值while (i <= j){int m = (i + j)>>>1;//m:中间值if(target < a[m]){//若查找的在中间值左边(小于中间值),最大值指针j占据中间值-1的位置,在进行计算j = m -1;} else if (a[m] < target){//若查找的在中间值右边(大于中间值),最小值指针j占据中间值+1的位置,在进行计算i = m + 1;} else {return m;//否则就是target值与中间值相等,直接返回中间值}}return -1;//不存在时返回-1,因为能找到的都在数组当中,在数组中的都有一个索引值,所以能找到的输出的数组索引值不可能为-1}/*本题问题1:为什么i<=j 意味着区间未比较的元素,而不是i<j  ?*       答:因为i,j 它们指向的元素也会参与比较,若i<j,则参与比较的只能是i与j中间的值,若这时i与j指向的元素相同则该算法会发生错误。* 本题问题2:为什么int m = (i + j)>>>1;,而不是int m = (i + j) / 2;  ?*       答:如果使用int m = (i + j) / 2 来确定中间值的话多次循环会有问题:这与二进制的第一位是不是符号位有关(1:负,0:正)。*           然而int m = (i + j)>>>1 这种方式:将i+j表示成的二进制整体向右移动一位(二进制对应的十进制做/2操作)* *///二分查找算法版本2.0public static int BinarySearchUpgrades(int[] a, int target){int i = 0,j = a.length;         //第一处改动while (i < j){                  //第二处改动int m = (i + j)>>>1;if(target < a[m]){j = m;                  //第三处改动} else if (a[m] < target){i = m + 1;} else {return m;}}return -1;}//测试类public static void main(String[] args) {int[] a = {7,13,21,30,38,44,52,53,78,79,88,89,91,92,93,94};int target = 92;long startTime = System.nanoTime();;//开始时时间点int result = BinarySearchBasic(a, target);//执行的算法long endTime = System.nanoTime();//结束时时间点long elapsedTime = endTime - startTime;//算法占用时间if (result != -1) {System.out.println("二分查找法1.0版本----------"+"目标值 " + target + " 在数组中的索引是 " + result+"\n"+"算法执行时间(纳秒): " + elapsedTime);} else {System.out.println("二分查找法1.0版本----------"+"目标值 " + target + " 未在数组中找到");}long startTime_1 = System.nanoTime();;//开始时时间点int result_1 = BinarySearchUpgrades(a, target);long endTime_1 = System.nanoTime();//结束时时间点long elapsedTime_1 = endTime_1 - startTime_1;//算法占用时间if (result_1 != -1) {System.out.println("二分查找法2.0版本----------"+"目标值 " + target + " 在数组中的索引是 " + result_1+"\n"+"算法执行时间(纳秒): " + elapsedTime_1);} else {System.out.println("二分查找法2.0版本----------"+"目标值 " + target + " 未在数组中找到");}}
}

JavaScript:

function binarySearchBasic(a, target) {let i = 0, j = a.length - 1; // 设置指针和初值while (i <= j) {let m = (i + j) >>> 1; // m:中间值if (target < a[m]) {// 若查找的在中间值左边(小于中间值),最大值指针j占据中间值-1的位置,在进行计算j = m - 1;} else if (a[m] < target) {// 若查找的在中间值右边(大于中间值),最小值指针j占据中间值+1的位置,在进行计算i = m + 1;} else {return m; // 否则就是target值与中间值相等,直接返回中间值}}return -1; // 不存在时返回-1,因为能找到的都在数组当中,在数组中的都有一个索引值,所以能找到的输出的数组索引值不可能为-1
}function binarySearchUpgrades(a, target) {let i = 0, j = a.length; // 第一处改动while (i < j) { // 第二处改动let m = (i + j) >>> 1;if (target < a[m]) {j = m; // 第三处改动} else if (a[m] < target) {i = m + 1;} else {return m;}}return -1;
}const a = [7, 13, 21, 30, 38, 44, 52, 53, 78, 79, 88, 89, 91, 92, 93, 94];
const target = 92;let startTime = performance.now(); // 开始时时间点
let result = binarySearchBasic(a, target);
let endTime = performance.now(); // 结束时时间点
let elapsedTime = endTime - startTime; // 算法占用时间if (result !== -1) {console.log(`二分查找法1.0版本---------- 目标值 ${target} 在数组中的索引是 ${result}\n算法执行时间(毫秒): ${elapsedTime}`);
} else {console.log(`二分查找法1.0版本---------- 目标值 ${target} 未在数组中找到`);
}let startTime1 = performance.now(); // 开始时时间点
let result1 = binarySearchUpgrades(a, target);
let endTime1 = performance.now(); // 结束时时间点
let elapsedTime1 = endTime1 - startTime1; // 算法占用时间if (result1 !== -1) {console.log(`二分查找法2.0版本---------- 目标值 ${target} 在数组中的索引是 ${result1}\n算法执行时间(毫秒): ${elapsedTime1}`);
} else {console.log(`二分查找法2.0版本---------- 目标值 ${target} 未在数组中找到`);
}

这篇关于二分法题目:在有序数组中A内,查找数组中的某一个元素的下标(本题是从由小到大的顺序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/280510

相关文章

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

MySQL中SQL的执行顺序详解

《MySQL中SQL的执行顺序详解》:本文主要介绍MySQL中SQL的执行顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql中SQL的执行顺序SQL执行顺序MySQL的执行顺序SELECT语句定义SELECT语句执行顺序总结MySQL中SQL的执行顺序

C#实现查找并删除PDF中的空白页面

《C#实现查找并删除PDF中的空白页面》PDF文件中的空白页并不少见,因为它们有可能是作者有意留下的,也有可能是在处理文档时不小心添加的,下面我们来看看如何使用Spire.PDFfor.NET通过C#... 目录安装 Spire.PDF for .NETC# 查找并删除 PDF 文档中的空白页C# 添加与删

SpringBoot中配置文件的加载顺序解读

《SpringBoot中配置文件的加载顺序解读》:本文主要介绍SpringBoot中配置文件的加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot配置文件的加载顺序1、命令⾏参数2、Java系统属性3、操作系统环境变量5、项目【外部】的ap

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a