caffe 有关prototxt文件的设置解读

2023-10-25 03:18
文章标签 设置 解读 caffe prototxt

本文主要是介绍caffe 有关prototxt文件的设置解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

olver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. ./bulid/tools/caffe train -solver  *_solver.prototxt  

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。

 到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。

·        Stochastic Gradient Descent (type:"SGD"),

·        AdaDelta (type:"AdaDelta"),

·        Adaptive Gradient (type:"AdaGrad"),

·        Adam (type: "Adam"),

·        Nesterov’s Accelerated Gradient (type: "Nesterov") and

·        RMSprop (type:"RMSProp")

Solver的流程:

1.     设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)

2.     通过forward和backward迭代的进行优化来跟新参数。

3.     定期的评价测试网络。 (可设定多少次训练后,进行一次测试)

4.     在优化过程中显示模型和solver的状态

在每一次的迭代过程中,solver做了这几步工作:

1、调用forward算法来计算最终的输出值,以及对应的loss

2、调用backward算法来计算每层的梯度

3、根据选用的slover方法,利用梯度进行参数更新

4、记录并保存每次迭代的学习率、快照,以及对应的状态。

接下来,我们先来看一个实例:

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. net: "examples/mnist/lenet_train_test.prototxt"  
  2. test_iter: 100  
  3. test_interval: 500  
  4. base_lr: 0.01  
  5. momentum: 0.9  
  6. type: SGD  
  7. weight_decay: 0.0005  
  8. lr_policy: "inv"  
  9. gamma: 0.0001  
  10. power: 0.75  
  11. display: 100  
  12. max_iter: 20000  
  13. snapshot: 5000  
  14. snapshot_prefix: "examples/mnist/lenet"  
  15. solver_mode: CPU  

接下来,我们对每一行进行详细解译:

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. net: "examples/mnist/lenet_train_test.prototxt"  

设置网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。

接下来第二行

test_iter: 100

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch。

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. test_interval: 500  
测试间隔。也就是每训练500次,才进行一次测试。

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. base_lr: 0.01  
  2. lr_policy: "inv"  
  3. gamma: 0.0001  
  4. power: 0.75  

这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。

lr_policy可以设置为下面这些值,相应的学习率的计算为:

  • - fixed:   保持base_lr不变.
  • - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
  • - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
  • - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
  • - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据                                 stepvalue值变化
  • - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
  • - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
multistep示例:

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. base_lr: 0.01  
  2. momentum: 0.9  
  3. weight_decay: 0.0005  
  4. # The learning rate policy  
  5. lr_policy: "multistep"  
  6. gamma: 0.9  
  7. stepvalue: 5000  
  8. stepvalue: 7000  
  9. stepvalue: 8000  
  10. stepvalue: 9000  
  11. stepvalue: 9500  
接下来的参数:
[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. momentum :0.9  
上一次梯度更新的权重

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. type: SGD  
优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. weight_decay: 0.0005  
权重衰减项,防止过拟合的一个参数。

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. display: 100  
每训练100次,在屏幕上显示一次。如果设置为0,则不显示。
[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. max_iter: 20000  
最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. snapshot: 5000  
  2. snapshot_prefix: "examples/mnist/lenet"  

快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存snapshot_prefix设置保存路径。

还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。

也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO

[plain]  view plain  copy
 
  在CODE上查看代码片 派生到我的代码片
  1. solver_mode: CPU  

设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

 注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。

这篇关于caffe 有关prototxt文件的设置解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/279661

相关文章

SpringBoot中配置文件的加载顺序解读

《SpringBoot中配置文件的加载顺序解读》:本文主要介绍SpringBoot中配置文件的加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot配置文件的加载顺序1、命令⾏参数2、Java系统属性3、操作系统环境变量5、项目【外部】的ap

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

PyCharm如何设置新建文件默认为LF换行符

《PyCharm如何设置新建文件默认为LF换行符》:本文主要介绍PyCharm如何设置新建文件默认为LF换行符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录PyCharm设置新建文件默认为LF换行符设置换行符修改换行符总结PyCharm设置新建文件默认为LF

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在