数学 - 线性代数导论 - #7 向量空间的两种构成方式:列空间与零空间

本文主要是介绍数学 - 线性代数导论 - #7 向量空间的两种构成方式:列空间与零空间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性代数导论 - #7 向量空间的两种构成方式:列空间与零空间

 

在#6中,我们介绍了向量空间的概念,提及了列空间的定义。本节课中,我们将通过对两种特殊向量空间——列空间与零空间的介绍,理解向量空间的两种构成方式。

首先是列空间C(A)。

C(A)指的是由矩阵A中的列向量的线性组合构成的空间。

C(A)是向量空间吗?显然是,因为这个空间构筑的方式就是向量的线性组合,它“天生”就符合向量空间的定义。

这个向量空间C(A)是Rn的子空间,其中n是维数也即每一个列向量的元素数目也即矩阵A的行数。

C(A)有什么用处呢?C(A)与向量b之间的关系可以说明Ax=b的解的存在性。

在#1我们就已经提及,列空间是我们从几何视角研究“Ax=b”的解x的一个基础性概念。所有的解x,也即对A进行线性组合的系数集合,应该能使组合的结果为预设的b。

换言之,对于特定的A,不是任意的b都能使Ax=b有解。只有当向量b包含于C(A)时,Ax=b才有解。

我自己原有的想法中有一个谬误:对于一个含有m个方程n个未知数的线性方程组,只要m<=n,方程组就一定有解?

显然不一定,各个方程之间不能够“相互冲突”。

翻译为线性代数的语言,A中的每一列必须“线性无关”。

线性相关的定义在高数(上)中已经提到了,不再赘述。从列空间的角度来看,如果去掉某一列之后,列空间不发生变化,也即这一列在构筑列空间的过程中没有“贡献”,那么这一列与其它列中的某一列(可能直接成倍数关系)或某两列(可能为两列的和或其它线性组合)线性相关。

矩阵A中的n列线性相关时,C(A)会比相同列数、线性无关的矩阵的列空间更小(也就是列空间无法充满Rn),换言之,使方程有解的b的数量也就更少(Rn中的b不一定位于子空间C(A)中)。故这种情况下对于任意的b方程组不一定有解。

 

其次是零空间N(A)。

N(A)是所有满足“Ax=0”的向量构成的空间。

N(A)是向量空间吗?我们使用封闭性检验来检查。

从N(A)中任取两个元素向量v和向量w,已知Av=Aw=0。

对于数乘结果kv,Akv=kAV=0,故kv仍在N(A)中;

对于加法结果v+w,A(v+w)=Av+Aw=0,故v+w仍在N(A)中。

综上,N(A)是向量空间。

N(A)使用消元算法求得,具体步骤将在之后的学习中介绍。

 

列空间和零空间都是向量空间。但是,这两种向量空间是从相反的方向生成的:

1.列空间:已有向量的线性衍生,这也是上一课#6中我们的思路;

2.零空间:求解出所有符合线性关系式的向量再进行合并,这将是我们进一步讨论Ax=b的思路之一。

它们又是统一的。所谓的向量空间,可以抽象为通过线性关系联系的集合。符合关系与否,等价于在空间内与否。

事实上,抛开向量空间的限定,所有由向量构成的空间,都具有这两种构成思路。

比如,我们讨论所有满足Ax=b的向量x构成的空间。

它是向量空间吗?如果b不是零向量,那显然不是。

那它是什么空间呢?这个问题也将在之后的学习中介绍。

 

线性代数的学习逐渐进入深水区,附上Prof. Strang的金句供君一笑:

转载于:https://www.cnblogs.com/samaritan-z/p/8385639.html

这篇关于数学 - 线性代数导论 - #7 向量空间的两种构成方式:列空间与零空间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/279432

相关文章

MybatisPlus中几种条件构造器运用方式

《MybatisPlus中几种条件构造器运用方式》QueryWrapper是Mybatis-Plus提供的一个用于构建SQL查询条件的工具类,提供了各种方法如eq、ne、gt、ge、lt、le、lik... 目录版本介绍QueryWrapperLambdaQueryWrapperUpdateWrapperL

idea设置快捷键风格方式

《idea设置快捷键风格方式》在IntelliJIDEA中设置快捷键风格,打开IDEA,进入设置页面,选择Keymap,从Keymaps下拉列表中选择或复制想要的快捷键风格,点击Apply和OK即可使... 目录idea设www.chinasem.cn置快捷键风格按照以下步骤进行总结idea设置快捷键pyth

Linux镜像文件制作方式

《Linux镜像文件制作方式》本文介绍了Linux镜像文件制作的过程,包括确定磁盘空间布局、制作空白镜像文件、分区与格式化、复制引导分区和其他分区... 目录1.确定磁盘空间布局2.制作空白镜像文件3.分区与格式化1) 分区2) 格式化4.复制引导分区5.复制其它分区1) 挂载2) 复制bootfs分区3)

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot返回文件让前端下载的几种方式

《SpringBoot返回文件让前端下载的几种方式》文章介绍了开发中文件下载的两种常见解决方案,并详细描述了通过后端进行下载的原理和步骤,包括一次性读取到内存和分块写入响应输出流两种方法,此外,还提供... 目录01 背景02 一次性读取到内存,通过响应输出流输出到前端02 将文件流通过循环写入到响应输出流

java敏感词过滤的实现方式

《java敏感词过滤的实现方式》文章描述了如何搭建敏感词过滤系统来防御用户生成内容中的违规、广告或恶意言论,包括引入依赖、定义敏感词类、非敏感词类、替换词类和工具类等步骤,并指出资源文件应放在src/... 目录1.引入依赖2.定义自定义敏感词类3.定义自定义非敏感类4.定义自定义替换词类5.最后定义工具类

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

SpringBoot的内嵌和外置tomcat的实现方式

《SpringBoot的内嵌和外置tomcat的实现方式》本文主要介绍了在SpringBoot中定制和修改Servlet容器的配置,包括内嵌式和外置式Servlet容器的配置方法,文中通过示例代码介绍... 目录1.内嵌如何定制和修改Servlet容器的相关配置注册Servlet三大组件Servlet注册详

C# WebAPI的几种返回类型方式

《C#WebAPI的几种返回类型方式》本文主要介绍了C#WebAPI的几种返回类型方式,包括直接返回指定类型、返回IActionResult实例和返回ActionResult,文中通过示例代码介绍的... 目录创建 Controller 和 Model 类在 Action 中返回 指定类型在 Action