python、talib选股:自动工具介绍以及倒锤头形态搜索并可视化显示

本文主要是介绍python、talib选股:自动工具介绍以及倒锤头形态搜索并可视化显示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 前言

2 工具介绍

1.1 界面

 3 测试搜索倒锤头形态


1 前言

本来想研究金融,可是看到代码就烦,难道还要特意去学习python编程?那样岂不浪费好多发cai的时间?估计很多股友跟我的经历很相似。想从网上找个好的python工具,但是在网上找来找去都没找到特别中意的,全都是一堆代码,没法直接拿来主义。没办法还是边学习编程边炒gu养家吧。

2 工具介绍

这个工具的特点是,一是不用安装,直接运行;二是后台集成了python,功能强大;三是扩展性强,后面需要什么功能模块直接安装就行;四是不用敲代码,一行代码都不用敲,点几下鼠标就出结果了;五是后面会不断扩充功能,因为我要用它炒gu挣钱养家糊口,功能不强大不行;六是增加了功能我会马上发布新程序来。股友们拿来主义随便用;七是。。。。。。

1.1 界面

刚开始界面有点简陋啊,将就吧。

 

 3 测试搜索倒锤头形态

选中一个已经导出的代码,然后点击“搜:倒锤头”,几秒钟后浏览器显示结果。下面的滑块可以左右平移、放大缩小。

 

记录一下实际使用的python代码:

from typing import List, Union
import talib
from pyecharts import options as opts
from pyecharts.charts import Kline, Line, Bar, Grid
import os
import pandas as pd'''
def net_split_data(data):category_data = []values = []volumes = []for i, tick in enumerate(data):category_data.append(tick[0])values.append(tick)volumes.append([i, tick[4], 1 if tick[1] > tick[2] else -1])return {"categoryData": category_data, "values": values, "volumes": volumes}def net_get_data():response = requests.get(url="https://echarts.apache.org/examples/data/asset/data/stock-DJI.json")json_response = response.json()# 解析数据return net_split_data(data=json_response)
'''def split_data(data):category_data = []values = []volumes = []# flags = []for i, tick in enumerate(data.values.tolist()):category_data.append(tick[0])values.append(tick)volumes.append([i, tick[5], 1 if tick[1] > tick[2] else -1])# flags.append([i, 0])open_p = pd.DataFrame(values)[1]close_p = pd.DataFrame(values)[2]low_p = pd.DataFrame(values)[3]high_p = pd.DataFrame(values)[4]array_cdl2c = talib.CDLINVERTEDHAMMER(open_p, high_p, low_p, close_p) # 倒锤头# l_array_cdl2c = array_cdl2c.values.tolist()# 由于不知道如何在k线图中叠加标记,使用这种变通方法,即替换成交量图中# 的成交量为乌鸦标记# 即:用 array_cdl2c 的值替换 df_volumes 中的成交量# 列表转化为DataFrame方便列操作df_volumes = pd.DataFrame(volumes)df_volumes[1] = array_cdl2cdf_volumes[2] = 1 # 2只乌鸦标志颜色统一设置为绿色volumes = df_volumes.values.tolist()return {"categoryData": category_data, "values": values, "volumes": volumes}def get_data(code):# df_tdx = pd.read_feather(r'./dataout/tdx/'+code+r'.day.feather')# df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')# df_tdx_b=df_tdx.truncate(before=start_date, after = end_date)# df_tdx_b['Openinterest']=0# df_tdx_b.rename(columns={'vol':'volume'}, inplace = True)# df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]# return split_data(data=df_tdx_b)df_tdx = pd.read_feather(r'./data/tdx/'+code+r'.day.feather')df_tdx.drop('Amout', axis=1, inplace=True)df_tdx.Date=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')df_tdx.Date=df_tdx.Date.map(lambda x:x.strftime('%Y-%m-%d'))# df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')# 调整列顺序df_tdx = df_tdx.loc[:,['Date', 'Open', 'Close', 'Low', 'High', 'Volume']]# df_tdx_b=df_tdx.truncate(before=start, after = end)# df_tdx_b['Openinterest']=0# df_tdx.rename(columns={'vol':'Volume'}, inplace = True)# df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]return split_data(data=df_tdx)def calculate_ma(day_count: int, data):result: List[Union[float, str]] = []for i in range(len(data["values"])):if i < day_count:result.append("-")continuesum_total = 0.0for j in range(day_count):sum_total += float(data["values"][i - j][1])result.append(abs(float("%.3f" % (sum_total / day_count))))return resultdef draw_charts():kline_data = [data[1:-1] for data in chart_data["values"]]kline = (Kline().add_xaxis(xaxis_data=chart_data["categoryData"]).add_yaxis(series_name="stock index",y_axis=kline_data,itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"),).set_global_opts(legend_opts=opts.LegendOpts(is_show=False, pos_bottom=10, pos_left="center"),datazoom_opts=[opts.DataZoomOpts(is_show=False,type_="inside",xaxis_index=[0, 1],range_start=98,range_end=100,),opts.DataZoomOpts(is_show=True,xaxis_index=[0, 1],type_="slider",pos_top="85%",range_start=98,range_end=100,),],yaxis_opts=opts.AxisOpts(is_scale=True,splitarea_opts=opts.SplitAreaOpts(is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)),),tooltip_opts=opts.TooltipOpts(trigger="axis",axis_pointer_type="cross",background_color="rgba(245, 245, 245, 0.8)",border_width=1,border_color="#ccc",textstyle_opts=opts.TextStyleOpts(color="#000"),),visualmap_opts=opts.VisualMapOpts(is_show=False,dimension=2,series_index=5,is_piecewise=True,pieces=[{"value": 1, "color": "#00da3c"},{"value": -1, "color": "#ec0000"},],),axispointer_opts=opts.AxisPointerOpts(is_show=True,link=[{"xAxisIndex": "all"}],label=opts.LabelOpts(background_color="#777"),),brush_opts=opts.BrushOpts(x_axis_index="all",brush_link="all",out_of_brush={"colorAlpha": 0.1},brush_type="lineX",),))line = (Line().add_xaxis(xaxis_data=chart_data["categoryData"]).add_yaxis(series_name="MA5",y_axis=calculate_ma(day_count=5, data=chart_data),is_smooth=True,is_hover_animation=False,linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),label_opts=opts.LabelOpts(is_show=False),).add_yaxis(series_name="MA10",y_axis=calculate_ma(day_count=10, data=chart_data),is_smooth=True,is_hover_animation=False,linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),label_opts=opts.LabelOpts(is_show=False),).add_yaxis(series_name="MA20",y_axis=calculate_ma(day_count=20, data=chart_data),is_smooth=True,is_hover_animation=False,linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),label_opts=opts.LabelOpts(is_show=False),).add_yaxis(series_name="MA30",y_axis=calculate_ma(day_count=30, data=chart_data),is_smooth=True,is_hover_animation=False,linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),label_opts=opts.LabelOpts(is_show=False),).set_global_opts(xaxis_opts=opts.AxisOpts(type_="category")))bar = (Bar().add_xaxis(xaxis_data=chart_data["categoryData"]).add_yaxis(series_name="Volume",y_axis=chart_data["volumes"],xaxis_index=1,yaxis_index=1,label_opts=opts.LabelOpts(is_show=False),).set_global_opts(xaxis_opts=opts.AxisOpts(type_="category",is_scale=True,grid_index=1,boundary_gap=False,axisline_opts=opts.AxisLineOpts(is_on_zero=False),axistick_opts=opts.AxisTickOpts(is_show=False),splitline_opts=opts.SplitLineOpts(is_show=False),axislabel_opts=opts.LabelOpts(is_show=False),split_number=20,min_="dataMin",max_="dataMax",),yaxis_opts=opts.AxisOpts(grid_index=1,is_scale=True,split_number=2,axislabel_opts=opts.LabelOpts(is_show=False),axisline_opts=opts.AxisLineOpts(is_show=False),axistick_opts=opts.AxisTickOpts(is_show=False),splitline_opts=opts.SplitLineOpts(is_show=False),),legend_opts=opts.LegendOpts(is_show=False),))# Kline And Lineoverlap_kline_line = kline.overlap(line)# Grid Overlap + Bargrid_chart = Grid(init_opts=opts.InitOpts(width="1400px",height="800px",animation_opts=opts.AnimationOpts(animation=False),))grid_chart.add(overlap_kline_line,grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", height="50%"),)grid_chart.add(bar,grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", pos_top="63%", height="16%"),)grid_chart.render("render.html")# 打开网页os.system("render.html")if __name__ == "__main__":'''df_tdx = pd.read_feather(r'./dataout/tdx/bj871396.day.feather')df_tdx.drop('Amout', axis=1, inplace=True)df_tdx.Date=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')df_tdx.Date=df_tdx.Date.map(lambda x:x.strftime('%Y-%m-%d'))# df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')# df_tdx.Date = df_tdx.astype({'Date':'str'})# df_tdx.Date = df_tdx.Date.map(lamda x:)# df_tdx.rename(columns={'vol':'Volume'}, inplace = True)# df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]# print(df_tdx.dtypes)# print(list(df_tdx))df_tdx = df_tdx.loc[:,['Date', 'Open', 'Close', 'Low', 'High', 'Volume']]# print(list(df_tdx))d_category_data = []d_values = []d_volumes = []# d_flags = []for i, tick in enumerate(df_tdx.values.tolist()):d_category_data.append(tick[0])d_values.append(tick)d_volumes.append([i, tick[5], 1 if tick[1] > tick[2] else -1])# d_flags.append([i, 0])open_p = pd.DataFrame(d_values)[1]close_p = pd.DataFrame(d_values)[2]low_p = pd.DataFrame(d_values)[3]high_p = pd.DataFrame(d_values)[4]array_cdl2c = talib.CDLINVERTEDHAMMER(open_p, high_p, low_p, close_p)# array_cdl2c 与 d_volumes合并,# 然后用 array_cdl2c 的之替换 df_volumes 中的成交量# 列表转化为DataFrame方便列操作df_volumes = pd.DataFrame(d_volumes)df_volumes[1] = array_cdl2c# l_array_cdl2c = array_cdl2c.values.tolist()''''''response = requests.get(url="https://echarts.apache.org/examples/data/asset/data/stock-DJI.json")json_response = response.json()# 解析数据category_data = []values = []volumes = []for i, tick in enumerate(json_response):category_data.append(tick[0])values.append(tick)volumes.append([i, tick[4], 1 if tick[1] > tick[2] else -1])# return {"categoryData": category_data, "values": values, "volumes": volumes}'''# net_chart_data = net_get_data()chart_data = get_data('bj430198')# chart_data = net_get_data()draw_charts()

程序有点大,近90M:

谁想用用试试程序就在评论区留下邮箱吧,我直接发你邮箱。

有什么建议请在评论区留言,不接受其他交流方式,有合适的建议我就加到程序里。

这篇关于python、talib选股:自动工具介绍以及倒锤头形态搜索并可视化显示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278085

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、