nlp事件抽取算例实现:(有完整算例和完整代码)

2023-10-24 21:10

本文主要是介绍nlp事件抽取算例实现:(有完整算例和完整代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

定义

事件抽取技术是从非结构化信息中抽取出用户感兴趣的事件,并以结构化呈现给用户。事件抽取任务可分解为4个子任务: 触发词识别、事件类型分类、论元识别和角色分类任务。其中,触发词识别和事件类型分类可合并成事件识别任务。论元识别和角色分类可合并成论元角色分类任务。事件识别判断句子中的每个单词归属的事件类型,是一个基于单词的多分类任务。角色分类任务则是一个基于词对的多分类任务,判断句子中任意一对触发词和实体之间的角色关系。

事件抽取任务:

事件有很多种,如因果事件,转则事件。。。
统一定义:一般一个事件都有事件,地点,人物等因素。
事件抽取就是把这些因素提取出来。
不多讲啦,上算例。

算例:

火灾新闻算例:
一个火灾事件新闻我们感兴趣的是 事故发生时间,事故发生地点,事故伤亡,事故原因。
我们把这些抽取出来.顺便再附上事件摘要。
即输入一个火灾事件新闻,输出 事故地点,事故时间,事故伤亡,事故原因,事故摘要。
方法:基于正则。

导入包:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# @Author: yudengwu
# @Date  : 2020/6/27
import re

#事故原因:

def pattern_cause(data):"data.type: [文字]"data = str(data)patterns = []key_words = ['起火', '事故', '火灾']pattern = re.compile('.*?(?:{0})原因(.*?)[,.?:;!,。?:;!]'.format('|'.join(key_words)))patterns.append(pattern)for c in patterns:print('事故原因:',c.search(data).group(1))

#事故伤亡:

def pattern_lose(data):"data.type: [文字]"data = str(data)patterns = []key_words = ['伤亡', '损失']pattern = re.compile('.*?(未造成.*?(?:{0}))[,.?:;!,。?:;]'.format('|'.join(key_words)))patterns.append(pattern)patterns.append(re.compile('(\d+人死亡)'))patterns.append(re.compile('(\d+人身亡)'))patterns.append(re.compile('(\d+人受伤)'))patterns.append(re.compile('(\d+人烧伤)'))patterns.append(re.compile('(\d+人坠楼身亡)'))patterns.append(re.compile('(\d+人遇难)'))for i in patterns:jieguo = i.search(data)if not jieguo:passelse:print('事故伤亡:',jieguo.group(1))

#事故时间:

#事故时间:
def pattern_time(data):data = ''.join(test_data)# data.type :strPATTERN = r"([0-9零一二两三四五六七八九十]+年)?([0-9一二两三四五六七八九十]+月)?([0-9一二两三四五六七八九十]+[号日])?([上中下午晚早]+)?([0-9零一二两三四五六七八九十百]+[点:\.时])?([0-9零一二三四五六七八九十百]+分?)?([0-9零一二三四五六七八九十百]+秒)?"pattern = re.compile(PATTERN)m = pattern.search(data)# "19年1月14日18时19分39秒上午"m1 = pattern.search("上午")year=m.group(1) # 年month=m.group(2) # 月day=m.group(3) # 日am=m.group(4)  # 上午,中午,下午,早中晚hour=m.group(5) # 时minutes=m.group(6)  # 分seconds=m.group(7) # 秒print('事故时间: ',year,month,day,am,hour,minutes,seconds)

#事故地点:

#事件地点
def pattern_address(data):data = ''.join(data)#转换格式p_string = data.split(',')#分句address=[]for line in p_string:line = str(line)PATTERN1 = r'([\u4e00-\u9fa5]{2,5}?(?:省|自治区|市)){0,1}([\u4e00-\u9fa5]{2,7}?(?:区|县|州)){0,1}([\u4e00-\u9fa5]{2,7}?(?:镇)){0,1}([\u4e00-\u9fa5]{2,7}?(?:村|街|街道)){0,1}([\d]{1,3}?(号)){0,1}'# \u4e00-\u9fa5 匹配任何中文# {2,5} 匹配2到5次# ? 前面可不匹配# (?:pattern) 如industr(?:y|ies) 就是一个比 'industry|industries' 更简略的表达式。意思就是说括号里面的内容是一个整体是以y或者ies结尾的单词pattern = re.compile(PATTERN1)p1 = ''p2 = ''p3 = ''p4 = ''p5 = ''p6 = ''m = pattern.search(line)if not m:continueelse:address.append(m.group(0))#print('事件地点:',m.group(0))print('事件地点:',set(address))

#事故摘要:
摘要讲解见链接:中文文本摘要提取 (文本摘要提取 有代码)基于python
停用词链接:nlp 中文停用词数据集

def shijian(data):import jiebatext=''.join(data)text = re.sub(r'[[0-9]*]', ' ', text)  # 去除类似[1],[2]text = re.sub(r'\s+', ' ', text)  # 用单个空格替换了所有额外的空格sentences = re.split('(。|!|\!|\.|?|\?)', text)  # 分句# 加载停用词def stopwordslist(filepath):stopwords = [line.strip() for line in open(filepath, 'r', encoding='gbk').readlines()]return stopwordsstopwords = stopwordslist("停用词.txt")# 词频word2count = {}  # line 1for word in jieba.cut(text):  # 对整个文本分词if word not in stopwords:if word not in word2count.keys():word2count[word] = 1else:word2count[word] += 1for key in word2count.keys():word2count[key] = word2count[key] / max(word2count.values())# 计算句子得分sent2score = {}for sentence in sentences:for word in jieba.cut(sentence):if word in word2count.keys():if len(sentence) < 300:if sentence not in sent2score.keys():sent2score[sentence] = word2count[word]else:sent2score[sentence] += word2count[word]# 字典排序def dic_order_value_and_get_key(dicts, count):# by hellojesson# 字典根据value排序,并且获取value排名前几的keyfinal_result = []# 先对字典排序sorted_dic = sorted([(k, v) for k, v in dicts.items()], reverse=True)tmp_set = set()  # 定义集合 会去重元素 --此处存在一个问题,成绩相同的会忽略,有待改进for item in sorted_dic:tmp_set.add(item[1])for list_item in sorted(tmp_set, reverse=True)[:count]:for dic_item in sorted_dic:if dic_item[1] == list_item:final_result.append(dic_item[0])return final_result# 摘要输出final_resul = dic_order_value_and_get_key(sent2score, 5)print('事件主要意思:',final_resul)

#主函数:

def main(data):pattern_cause(data)pattern_lose(data)pattern_time(data)pattern_address(data)shijian(data)
if __name__ =='__main__':#读取数据with open('新闻.txt', 'r', encoding='utf-8') as f:test_data = f.readlines()main(test_data)

数据集:新闻.txt

1月14日18时19分,宝鸡市渭滨区金陵街道机厂街社区铁路家属院17号楼一单元发生火灾,火势由二、三、四阳台向上蔓延,一名老人被困屋内,情况危急。宝鸡消防支队渭滨大队广元路中队接警后,迅速赶赴现场展开救援,将被困老人救出。记者了解到,火灾发生后,宝鸡消防支队渭滨大队广元路中队立即赶赴现场开展救援,经现场侦查发现,火势由二、三、四楼阳台向上蔓延,均已过火。由于小区内道路蜿蜒且狭窄,中队立即调派经一路、开元、宝光、电子街4个卫星消防站增援。中队到场后立即成立搜救组、灭火组、供水组开展救援工作。消防在搜救过程中发现1单元2楼南户有一名老人被困,中队立即进行营救,同时并对2单元30余名群众进行疏散。灭火小组从小区南北两侧对现场火势进行打压。铁塔路及新华路中队随后也赶到现场增援,20时10分现场明火被扑灭。火灾未造成人员伤亡,起火原因正在调查中。

运行结果
在这里插入图片描述
事件主题意思在下面:

截个全图看下:
在这里插入图片描述
运行结果还不错。
反思
这代码是针对国内新闻的,因为地址正则是针对国内地址的。
代码马马虎虎,不是很完善。针对其他类新闻和文本,则需修改下正则(如事事故伤亡可能没有)。
基于正则需要花费大量脑力。基于正则主要在于如何定义规则。
有时间还是想想基于模型吧。
电气工程的计算机萌新:余登武。写文章不容易。如果你喜欢本文章,请点个赞支持下写作,谢谢。
在这里插入图片描述
在这里插入图片描述

这篇关于nlp事件抽取算例实现:(有完整算例和完整代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/277767

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too