curve25519-dalek中field reduce原理分析

2023-10-24 15:30

本文主要是介绍curve25519-dalek中field reduce原理分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对于Curve25519,其Field域内的module Fp = 2255-19。
对于64位系统:

/// A `FieldElement51` represents an element of the field
/// \\( \mathbb Z / (2\^{255} - 19)\\).
///
/// In the 64-bit implementation, a `FieldElement` is represented in
/// radix \\(2\^{51}\\) as five `u64`s; the coefficients are allowed to
/// grow up to \\(2\^{54}\\) between reductions modulo \\(p\\).
///
/// # Note
///
/// The `curve25519_dalek::field` module provides a type alias
/// `curve25519_dalek::field::FieldElement` to either `FieldElement51`
/// or `FieldElement2625`.
///
/// The backend-specific type `FieldElement51` should not be used
/// outside of the `curve25519_dalek::field` module.
#[derive(Copy, Clone)]
pub struct FieldElement51(pub (crate) [u64; 5]);

src/backend/serial/u64/field.rs中的reduce函数,是将[u64;5] low-reduce成h, h ∈ [ 0 , 2 ∗ p ) , p = 2 255 − 19 h \in [0, 2*p), p=2^{255}-19 h[0,2p),p=225519。具体的原理如下:

1. field reduce原理分析

如要求某整数 u m o d ( 2 255 − 19 ) u\quad mod \quad (2^{255}-19) umod(225519),可将u整数用多项式做如下表示:
u = ∑ i u i 2 51 i x i , 其 中 , u i ∈ N u=\sum_{i}^{}u_i2^{51i}x^i,其中,u_i \in N u=iui251ixiuiN
设置x=1,通过对u多项式求值即可代表域Fp内的值。
如需求一个值:
a ∈ [ 0 , 2 320 − 1 ] m o d ( 2 255 − 19 ) = ? a\in [0, 2^{320}-1] \quad mod \quad(2^{255}-19)=? a[0,23201]mod(225519)=
在这里插入图片描述
a ∈ [ 0 , 2 320 − 1 ] a\in [0, 2^{320}-1] a[0,23201]以上图表示,同时根据 a i a_i ai分别取相应的 b i , c i b_i,c_i bi,ci:
b i = a i &amp; ( 2 &lt; &lt; 51 − 1 ) , c i = a i &gt; &gt; 51 , 其 中 , c i &lt; = 2 13 b_i=a_i \&amp; (2&lt;&lt;51 -1), c_i=a_i &gt;&gt; 51, 其中,c_i&lt;= 2^{13} bi=ai&(2<<511),ci=ai>>51ci<=213
采用parallel carry-out方式进行,对应有:
在这里插入图片描述
以多项式方式表示时,其中的最高项为:
c 4 ∗ 2 255 ∗ x 5 m o d ( 2 255 − 19 ) c_4*2^{255}*x^5 \quad mod \quad (2^{255}-19) c42255x5mod(225519)
∵ 2 255 ∗ x 5 ≡ 19 m o d ( 2 255 − 19 ) \because 2^{255}*x^5 \equiv 19 \quad mod \quad (2^{255}-19) 2255x519mod(225519)
∴ c 4 ∗ 2 255 ∗ x 5 ≡ c 4 ∗ 19 m o d ( 2 255 − 19 ) \therefore c_4*2^{255}*x^5 \equiv c_4*19 \quad mod \quad (2^{255}-19) c42255x5c419mod(225519)
所以上图可演化为:
在这里插入图片描述
∵ c i &lt; = 2 13 \because c_i&lt;= 2^{13} ci<=213
∵ 2 51 + 2 13 &lt; 2 51 + 2 13 ∗ 19 &lt; 2 51.0000000001 \because 2^{51}+2^{13}&lt;2^{51}+2^{13}*19&lt;2^{51.0000000001} 251+213<251+21319<251.0000000001
∵ 2 ( 51.0000000001 ∗ 5 ) &lt; 2 ∗ ( 2 255 − 19 ) = 2 ∗ p , p = 2 255 − 19 \because 2^{(51.0000000001*5)} &lt; 2*(2^{255}-19)=2*p, p =2^{255}-19 2(51.00000000015)<2(225519)=2p,p=225519

sage: (2^51)+(2^13)*19<2^51.0000000001
True
sage: 2^(51.0000000001*5) < 2*(2^255-19)
True

∴ h 4 = b 4 + c 3 , h 3 = b 3 + c 2 , h 2 = b 2 + c 1 , h 1 = b 1 + c 0 , h 0 = b 0 + c 4 ∗ 19 \therefore h_4=b_4+c_3, h_3=b_3+c_2,h_2=b_2+c_1,h_1=b_1+c_0,h_0=b_0+c_4*19 h4=b4+c3,h3=b3+c2,h2=b2+c1,h1=b1+c0,h0=b0+c419
∴ h = ∑ i = 0 4 h i ∗ 2 ( 51.0000000001 ∗ i ) &lt; 2 ∗ p \therefore h=\sum_{i=0}^{4}h_i*2^{(51.0000000001*i)}&lt;2*p h=i=04hi2(51.0000000001i)<2p
在这里插入图片描述

2. field reduce代码实现

/// Given 64-bit input limbs, reduce to enforce the bound 2^(51 + epsilon).#[inline(always)]fn reduce(mut limbs: [u64; 5]) -> FieldElement51 {const LOW_51_BIT_MASK: u64 = (1u64 << 51) - 1;// Since the input limbs are bounded by 2^64, the biggest// carry-out is bounded by 2^13.//// The biggest carry-in is c4 * 19, resulting in//// 2^51 + 19*2^13 < 2^51.0000000001//// Because we don't need to canonicalize, only to reduce the// limb sizes, it's OK to do a "weak reduction", where we// compute the carry-outs in parallel.let c0 = limbs[0] >> 51;let c1 = limbs[1] >> 51;let c2 = limbs[2] >> 51;let c3 = limbs[3] >> 51;let c4 = limbs[4] >> 51;limbs[0] &= LOW_51_BIT_MASK;limbs[1] &= LOW_51_BIT_MASK;limbs[2] &= LOW_51_BIT_MASK;limbs[3] &= LOW_51_BIT_MASK;limbs[4] &= LOW_51_BIT_MASK;limbs[0] += c4 * 19;limbs[1] += c0;limbs[2] += c1;limbs[3] += c2;limbs[4] += c3;FieldElement51(limbs)}

3. field reduce结果 ∈ [ 0 , 2 ∗ p ) , p = 2 255 − 19 \in [0, 2*p), p=2^{255}-19 [0,2p),p=225519

src/backend/serial/u64/field.rs中的sub,neg等函数都只是调用了reduce函数,将最终的返回结果限定在了 ∈ [ 0 , 2 ∗ p ) , p = 2 255 − 19 \in [0, 2*p), p=2^{255}-19 [0,2p),p=225519,只有调用to_bytes函数,才会将结果限定在 ∈ [ 0 , p ) , p = 2 255 − 19 \in [0, p), p=2^{255}-19 [0,p),p=225519

		// -1 + (2^255 - 19) = 2^255 - 20 = p-1let a: [u8;32] = [0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f];let mut b = FieldElement::from_bytes(&a);println!("zyd-before negate b:{:?}", b);b.conditional_negate(Choice::from(1)); //求倒数,用的是reduce结果,对应结果为:-(p-1) mod p = p+1println!("zyd--b:{:?}", b);println!("zyd--b.to_bytes():{:?}", b.to_bytes()); //to_bytes()函数会对结果进行再次module,(p+1) mod p = 1.

对应输出为:

zyd-before negate b:FieldElement51([2251799813685228, 2251799813685247, 2251799813685247, 2251799813685247, 2251799813685247])
zyd--b:FieldElement51([2251799813685230, 2251799813685247, 2251799813685247, 2251799813685247, 2251799813685247])
zyd--b.to_bytes():[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

4. 一些常量值表示

1)-1对应modulo值为2255-19-1=57896044618658097711785492504343953926634992332820282019728792003956564819948,用FieldElement51表示为:

FieldElement51([2251799813685228, 2251799813685247, 2251799813685247, 2251799813685247, 2251799813685247])
sage: 2251799813685228+2251799813685247*(2^51)+2251799813685247*(2^102)+2251799813685247*(2^153)+2251799813685247*(2^204)==2^255-19-1
True

2)0值对应FieldElement51表示为:

FieldElement51([ 0, 0, 0, 0, 0 ])

3)1值对应FieldElement51表示为:

FieldElement51([ 1, 0, 0, 0, 0 ])

4)16*p值对应FieldElement51表示为:

FieldElement51([ 36028797018963664, 36028797018963952, 36028797018963952, 36028797018963952, 36028797018963952 ])
sage: p=2^255-19
sage: 36028797018963664+36028797018963952*(2^51)+36028797018963952*(2^102)+36028
....: 797018963952*(2^153)+36028797018963952*(2^204)==16*p
True
sage:

这篇关于curve25519-dalek中field reduce原理分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/276103

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方