sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验

本文主要是介绍sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

课程1_第2周_测验题

目录:目录

第一题

1.神经元计算什么?

A. 【  】神经元计算激活函数后,再计算线性函数(z=Wx+b)

B. 【  】神经元计算一个线性函数(z=Wx+b),然后接一个激活函数

C. 【  】神经元计算一个函数g,它线性地缩放输入x(Wx+b)

D. 【  】神经元先计算所有特征的平均值,然后将激活函数应用于输出

答案:

B.【 √ 】神经元计算一个线性函数(z=Wx+b),然后接一个激活函数

第二题

2.以下哪一个是逻辑回归的损失函数?

A. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = ∣ y ( i ) − y ^ ( i ) ∣ L^{(i)}(\hat{y}^{(i)},y^{(i)})=|y^{(i)} - \hat{y}^{(i)}| L(i)(y^(i),y(i))=y(i)y^(i)

B. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = m a x ( 0 , y ( i ) − y ^ ( i ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=max(0,y^{(i)} - \hat{y}^{(i)}) L(i)(y^(i),y(i))=max(0,y(i)y^(i))

C. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = ∣ y ( i ) − y ^ ( i ) ∣ 2 L^{(i)}(\hat{y}^{(i)},y^{(i)})=|y^{(i)} - \hat{y}^{(i)}|^2 L(i)(y^(i),y(i))=y(i)y^(i)2

D. 【  】 L ( i ) ( y ^ ( i ) , y ( i ) ) = − ( y ( i ) l o g ( y ^ ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − y ^ ( i ) ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=-(y^{(i)}log(\hat{y}^{(i)})+(1-y^{(i)})log(1-\hat{y}^{(i)})) L(i)(y^(i),y(i))=(y(i)log(y^(i))+(1y(i))log(1y^(i)))

答案:

D.【 √ 】 L ( i ) ( y ^ ( i ) , y ( i ) ) = − ( y ( i ) l o g ( y ^ ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − y ^ ( i ) ) ) L^{(i)}(\hat{y}^{(i)},y^{(i)})=-(y^{(i)}log(\hat{y}^{(i)})+(1-y^{(i)})log(1-\hat{y}^{(i)})) L(i)(y^(i),y(i))=(y(i)log(y^(i))+(1y(i))log(1y^(i)))

第三题

3.假设img是一个(32, 32, 3)数组,表示一个32x32图像,它有三个颜色通道:红色、绿色和蓝色。如何将其重塑为列向量?

A. 【  】x = img.reshape((1, 32 * 32, 3))

B. 【  】x = img.reshape((32 * 32 * 3, 1))

C. 【  】x = img.reshape((3, 32 * 32))

D. 【  】x = img.reshape((32 * 32, 3))

答案:

B.【 √ 】x = img.reshape((32 * 32 * 3, 1))

第四题

4.考虑以下两个随机数组a和b:

a = np.random.randn(2, 3) # a.shape = (2, 3)
b = np.random.randn(2, 1) # b.shape = (2, 1)
c = a + b

c的维度是什么?

A. 【  】c.shape = (3, 2)

B. 【  】c.shape = (2, 1)

C. 【  】c.shape = (2, 3)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

C.【 √ 】c.shape = (2, 3)

第五题

5.考虑以下两个随机数组a和b:

a = np.random.randn(4, 3) # a.shape = (4, 3)
b = np.random.randn(3, 2) # b.shape = (3, 2)
c = a * b

c的维度是什么?

A. 【  】c.shape = (4, 3)

B. 【  】c.shape = (3, 3)

C. 【  】c.shape = (4, 2)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

D.【 √ 】计算不成立因为这两个矩阵维度不匹配

Note:运算符 “*” 说明了按元素乘法来相乘,但是元素乘法需要两个矩阵之间的维数相同,所以这将报错,无法计算。

第六题

6.假设每个示例有 n x n_x nx个输入特性, X = [ X ( 1 ) , X ( 2 ) … , X ( m ) ] X=[X^{(1)},X^{(2)}…,X^{(m)}] X=[X(1)X(2),X(m)] X X X的维数是多少?

A. 【  】(m, 1)

B. 【  】(1, m)

C. 【  】( n x n_x nx, m)

D. 【  】(m, n x n_x nx)

答案:

C.【 √ 】( n x n_x nx, m)

第七题

7.np.dot(a,b)对a和b的进行矩阵乘法,而a * b执行元素的乘法,考虑以下两个随机数组a和b:

a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a, b)

c的维度是什么?

A. 【  】c.shape = (12288, 150)

B. 【  】c.shape = (150, 150)

C. 【  】c.shape = (12288, 45)

D. 【  】计算不成立因为这两个矩阵维度不匹配

答案:

C.【 √ 】c.shape = (12288, 45)

第八题

8.请考虑以下代码段:

#a.shape = (3,4)  
#b.shape = (4,1)  
for i in range(3):  for j in range(4):  c[i][j] = a[i][j] + b[j]

如何将之矢量化?

A. 【  】c = a + d

B. 【  】c = a +b.T

C. 【  】c = a.T + b.T

D. 【  】c = a.T + b

答案:

B.【 √ 】c = a +b.T

Note:a的每一行元素,逐行相加b的每一行元素

第九题

9.请考虑以下代码段:

a = np.random.randn(3, 3)
b = np.random.randn(3, 1)
c = a * b

c的维度是什么?

A. 【  】这会触发广播机制,b会被复制3次变成(3, 3),而 * 操作是元素乘法,所以c.shape = (3, 3)

B. 【  】这会触发广播机制,b会被复制3次变成(3, 3),而 * 操作是矩阵乘法,所以c.shape = (3, 3)

C. 【  】这个操作将一个3x3矩阵乘以一个3x1的向量,所以c.shape = (3, 1)

D. 【  】这个操作会报错,因为你不能用 * 对这两个矩阵进行操作,你应该用np.dot(a, b)

答案:

A.【 √ 】这会触发广播机制,b会被复制3次变成(3,3),而 * 操作是元素乘法,所以c.shape = (3, 3)

第十题

10.请考虑以下计算图:
在这里插入图片描述

输出J是?

A. 【  】J = (c - 1) * (b + a)

B. 【  】J = (a - 1) * (b + c)

C. 【  】J = a * b + b * c + a * c

D. 【  】J = (b - 1) * (c + a)

答案:

B.【 √ 】J = (a - 1) * (b + c)

这篇关于sheng的学习笔记-【中文】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/2724

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

RedisTemplate默认序列化方式显示中文乱码的解决

《RedisTemplate默认序列化方式显示中文乱码的解决》本文主要介绍了SpringDataRedis默认使用JdkSerializationRedisSerializer导致数据乱码,文中通过示... 目录1. 问题原因2. 解决方案3. 配置类示例4. 配置说明5. 使用示例6. 验证存储结果7.

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认