电路原理-反激式电路

2023-10-24 01:20
文章标签 原理 电路 反激式

本文主要是介绍电路原理-反激式电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、1反激式电路是小功率电源(150W以下)当中,最常用的电路,它的工作原理如下。
1、2如图1,变压器T1,标记红点的端,12、3、A为同名端,10、1、B为异名端。
        当MOS管导通的时候,初级绕组N1、次级绕组N、VCC绕组N3感应电动势的方向为10、1、B为+,12、3、A为-。各绕组的电流方向如箭头所示。                                                                            初级绕组N1。整流后的高压经过变乐器初级饶组,在初级浇组N1上产生10+、12-的感应电动势。电流流向为10进来,再到12,再到MOS管。                                                                                   次级绕组N2:由于同名端的关系,在次级绕组N2上产生B+、A-的感应电动势,它的电流方向如图1,蓝色箭头所示,由B流向A,此时次级肖特基
        D3反向偏置,处于截止状态,不能导通..这个时候的负载如红色箭头所示,由C4、C5电容给负载进行供电。
        VCC绕组N3:由于同名端的关系,在VCC绕组N3上产生1+、3-的感应电动势,看箭头电流方向,此时该绕组不能形成电流通路。IC的供电是由
图9,C2启动电容来提供的。

 

 

1、3如图2,当MOS管关断的时候,各绕组的感应电动势反向,初级绕组N1、次级绕组N2、VCC绕组3感应电动势的方向为12、3、A为+,10、1、B为-各绕组的电流方向如箭头所示。
         初级绕组N1:由于此时MOS关断,初级绕组N1上产生一个12+、10-的反向感应电动势,12脚也就是MOS管的D极,它们是连在一起的,MOS管的D极会产生一个反向的尖锋电压,通过初级RCD缓冲吸收回路进行释放。

        次级绕组N2;由于同名端的关系,在次级绕组N2上产生A+、B-的反向感应电动势,它的电流方向如图2,蓝色箭头,由A流向B,此时次级肖特基D3正向偏置,处于导通状态。此时的负载是由次级铙组N2进行供电。大家看红色箭头次级饶组N2同时会给C4、C5电容充电。

        VCC绕组N3:由于同名端的关系,在VCC绕组N3上产生3+、1-的反向感应电动势,D2二极管正向导通.IC的供电是由图10,由VCC绕组N3供电,同时VCC绕组N3对启动电容进行充。

 反激式电路原理也可以简单的理解,初级导通,绪存能量,次级关断。初级关断,次级导通,释放能

2、原理图分析

2、1反激式电路图原边反馈电路和副边反馈电路。

2、2如图3,是常用的副边反馈电路,我们就来对这个电路坐具体分析

 2、3  交流输入到整流桥

        如图4,因为AC交流电的波形是正弦波,半个周期内,L线电压会高于N线电压,另外半个周期,L线电压会低于N线电压。

        如图5,图6,红色箭头所示,分别为AC交流电的正半周、负半周电流流向。

F1              当电路不正常的时候,有大电流产生时,先会烧坏保险丝,从而保护整个后级电路.
NTC1         避免开机瞬间,防浪涌电流冲击,保护后级电路。
MOV1        抑制浪涌电压,另外配合前端的保险丝一起,起到防雷击的作用,保护后级电路。
L1、L2       滤波,滤同时加在L、N线的共模干扰信号,EMI测试时,过传导干扰测试用。
CX1,           滤波,滤L、N线之间的差模于扰信号,EMII测试时,过传导干扰测试用。

R1、R2      当输入插头拔掉时,释放CX1电容储存的电能。
BD1            整流,把输入交流电压变成直流电压。

2、4                初级主回路 MOS管导通关断

如图7,图8,为M0S管导通关断时的电流流向。

 C1         整流后,储能,滤波。
Q1          过IC6脚Pw波驱动,实现开关作用。
R22        限流电阻,MOs管导通的时候,通过检测R22上的电压,进入到IC4脚,跟IC内部的阀值电压进行比较,来控制过流点。
D1          给OS管关断时产生的尖峰电压提供一个释放通路。

 R5、R6、R7        吸收MOs管关断时产生的尖峰电压,用来消耗能量-
c3          因为该电容容值比较小,容抗比较大,能用来抑制MOS管关断时产生的瞬态高压。经常还会串一个电阻R8,

 

这篇关于电路原理-反激式电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/su165108515/article/details/130200270
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/271734

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事