使用Python检测新冠肺炎疫情拐点,抗疫成果明显!

2023-10-23 22:10

本文主要是介绍使用Python检测新冠肺炎疫情拐点,抗疫成果明显!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 简介

拐点检测(Knee point detection),指的是在具有上升或下降趋势的曲线中,在某一点之后整体趋势明显发生变化,这样的点就称为拐点(如图1所示,在蓝色标记出的点之后曲线陡然上升):

图1

本文就将针对Python中用于拐点检测的第三方包kneed进行介绍,并以新型冠状肺炎数据为例,找出各指标数学意义上的拐点。

2 基于kneed的拐点检测

2.1 kneed基础

许多算法都需要利用肘部法则来确定某些关键参数,如K-means中聚类个数k、DBSCAN中的搜索半径eps等。

在面对需要确定所谓肘部,即拐点时,人为通过观察来确定位置的方式不严谨,需要一套有数学原理支撑的检测方法。

Jeannie Albrecht等人在Finding a “Kneedle” in a Haystack: Detecting Knee Points in System Behavior(你可以在文章开头的Github仓库中找到)中从曲率的思想出发,针对离散型数据,结合离线、在线的不同应用场景以及Angle-based、Menger Curvature、EWMA等算法,提出了一套拐点检测方法。

kneed就是对这篇论文所提出算法的实现。

使用pip install kneed完成安装之后,下面我们来了解其主要用法:

2.1.1 KneeLocator

KneeLocator是kneed中用于检测拐点的模块,其主要参数如下:

x:待检测数据对应的横轴数据序列,如时间点、日期等y:待检测数据序列,在x条件下对应的值,如x为星期一,对应的y为降水量S:float型,默认为1,敏感度参数,越小对应拐点被检测出得越快curve:str型,指明曲线之上区域是凸集还是凹集,concave代表凹,convex代表凸direction:str型,指明曲线初始趋势是增还是减,increasing表示增,decreasing表示减online:bool型,用于设置在线/离线识别模式,True表示在线,False表示离线;在线模式下会沿着x轴从右向左识别出每一个局部拐点,并在其中选择最优的拐点;离线模式下会返回从右向左检测到的第一个局部拐点

KneeLocator在传入参数实例化完成计算后,可返回的我们主要关注的属性如下:

kneeelbow:返回检测到的最优拐点对应的x

knee_yelbow_y:返回检测到的最优拐点对应的y

all_elbowsall_knees:返回检测到的所有局部拐点对应的x

all_elbows_yall_knees_y:返回检测到的所有局部拐点对应的y

curve与direction参数非常重要,用它们组合出想要识别出的拐点模式。

以余弦函数为例,在oonline设置为True时,分别在curve='concave'+direction='increasing'、curve='concave'+direction='decreasing'、curve='convex'+direction='increasing'和curve='convex'+direction='decreasing'参数组合下对同一段余弦曲线进行拐点计算:

import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
from kneed import KneeLocatorstyle.use('seaborn-whitegrid')x = np.arange(1, 3, 0.01)*np.pi
y = np.cos(x)# 计算各种参数组合下的拐点
kneedle_cov_inc = KneeLocator(x,y,curve='convex',direction='increasing',online=True)kneedle_cov_dec = KneeLocator(x,y,curve='convex',direction='decreasing',online=True)kneedle_con_inc = KneeLocator(x,y,curve='concave',direction='increasing',online=True)kneedle_con_dec = KneeLocator(x,y,curve='concave',direction='decreasing',online=True)fig, axe = plt.subplots(2, 2, figsize=[12, 12])axe[0, 0].plot(x, y, 'k--')
axe[0, 0].annotate(s='Knee Point', xy=(kneedle_cov_inc.knee+0.2, kneedle_cov_inc.knee_y), fontsize=10)
axe[0, 0].scatter(x=kneedle_cov_inc.knee, y=kneedle_cov_inc.knee_y, c='b', s=

这篇关于使用Python检测新冠肺炎疫情拐点,抗疫成果明显!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/270762

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.