文献及代码阅读报告 - SS-LSTM:A Hierarchical LSTM Model for Pedestrian Trajectory Prediction...

本文主要是介绍文献及代码阅读报告 - SS-LSTM:A Hierarchical LSTM Model for Pedestrian Trajectory Prediction...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1616500-20190808233230913-1040141317.png

概览

简述

SS-LSTM全称Social-Scene-LSTM,是一种分层的LSTM模型,在已有的考虑相邻路人之间影响的Social-LSTM模型之上额外增加考虑了行人背景的因素。SS-LSTM架构类似Seq2Seq,由3个Encoder生成的向量拼接后形成1个Decoder的输入,并最终做出轨迹预测,有关Encoder和Decoder具体细节下文介绍。

主要结论与贡献

  1. 提出了SS-LSTM分层模型,相较于其他LSTM-based模型在benchmark数据集上有更好表现。
  2. 引入了圆形的neighborhood划分方式,经过实际对比得出log圆形区域划分相交线性圆形划分和矩形划分有更好表现。

测试

  1. 数据集:ETH、UCY(采用Alahi等人提出Social LSTM时使用的数据集,位置信息经过了归一化处理)。

  2. 测试指标:FDE、ADE

  3. 测试对象:

    1. baseline:linear、Vanilla LSTM

    2. LSTM-based:S-LSTM(g,c,l),SS-LSTM(g,c,l)

      g: grid maps, c:circle maps, l: log maps(区别在于区域形状和划分标准不同)

进一步研究方向

  1. 增加行人的影响权重,例如依据行人间的距离。(此文采用的neighborhood矩阵是Occupancy Tensor而不是Social Tensor,在模型开始跑之间可以完全求出,即每个行人的LSTM数据在运行中不会交叉。详情请见https://www.cnblogs.com/sinoyou/p/11227348.html)
  2. 为模型加入空间-时间的注意力机制。
  3. 为模型加入新网络以学习其他因素,例如场景中行人之间的舒适距离。


模型

整体框架

1616500-20190808233246054-1482220918.png

[注意]:图示来自论文,查阅模型代码后发现部分连线有误导性,详情见下一节。


1. Person Scale LSTM Encoder

描述:对于行人\(i\)编码其自身的轨迹序列

模型输入:\(X_{obs}^i = [(x_1^i,y_1^i), ..., (x_{obs}^i,y_{obs}^i)]\)

模型迭代:\(p_t^i = LSTM_l^{enc}(p_{t-1}^i, x_t^i, y_t^i, W_1)\)

2. Social Scale LSTM Encoder

描述:对于行人\(i\)编码其邻近行人的信息矩阵序列

模型输入:Occupancy Map \(O_t^i\)

  • Occupancy对于每个行人在每个时间片刻都是不同的。
  • \(O_t^i(a,b) = \Sigma_{j \in N^i} \alpha_{ab}(x_t^j, y_t^j)\) (其中\(\alpha(.,.)\)是判断函数,根据行人\(j\)是否处在\(i\)编号为\([a,b]\)的区域内,映射至真值域)。
  • 本文注重讨论了三种判断函数:
    • 方形图
    • 线性半径的圆形图
    • log半径的圆形图

模型迭代:\(s_o^{i,t} = LSTM_2^{enc}(s_o^{i,t-1}, O_i^t, W_2)\)

3. Scene Scale Encoder

描述:对于行人\(i\)编码其所处图像背景信息。

模型输入:Scene Feature \(F_t\)

  • 从图片到LSTM的输入\(F_t\),需要使用CNN网络提取特征。
  • CNN网络同其他LSTMs共同训练,包含三层带池化的卷积层,两层全连接层和防止过拟合的Batch Normalization层。

1616500-20190808233300688-1991439045.png

模型迭代:\(s_c^{i,t} = LSTM_3^{enc}(s_c^{i,t-1}, F_t, W_3)\)


4. Decoder

描述:根据三个Encoder编码出的向量进行解码,做出轨迹预测。

模型输入:将来自Person Scale,Social Scale,Scene Scale编码器的输入拼接。

  • \(h_i^t = \varphi(p_t^i, s_o^{i,t}, s_c^{i,t}) = p_t^i \oplus s_o^{i,t} \oplus s_c^{i,t}\)
  • [注意]:原文描述与源代码实现存在出入,原文\(h_i^t\)的计算部分是\(1<=t<=obs\),但源代码并不是这样实现的,详情请见下文。

模型迭代:

\[\hat h_t^i = LSTM^{dec}(\hat h_{t-1}^i, h_t^i, W_d)\]

\[(\hat x_i^t, \hat y_i^t) = W_o\hat h_t^i + b_o \]

[注意]:与Social LSTM,Spatio-Temporal Attention Network等不同的是,SS-LSTM模型的decoder输出不再是基于高斯二维分布,而是直接将Decoder的输出经线性变换后即得到预测轨迹的坐标值



SS-LSTM模型细节内容探讨

在阅读SS-LSTM的原文时由于阅读能力不足/文章描述不充分导致对模型部分细节存在疑惑,好在原文中提供了模型的源代码,因而解答了这些疑惑,在此做一些记录。若笔者理解存在问题,恳请批评指正。

Question 1

模型训练时的损失函数?

模型对于Decoder的输出并未采用二维高斯分布的假设,因此无法使用negative log-likelihood作为损失函数。经过笔者阅读,尚未在原文中发现有关损失函数的描述,在源代码中损失函数采用Mean Square Error。


Question 2

对于Decoder的LSTM,其每步迭代过程中的输入是什么?

原文有指明Decoder每步运行的输入:\(h_i^t = \varphi(p_t^i, s_o^{i,t}, s_c^{i,t}) = p_t^i \oplus s_o^{i,t} \oplus s_c^{i,t}\)(即对应的三个encoder每一步输出的拼接值),但放在实际情况中存在几个矛盾:

  • \(obs\_length < pred\_length\),则没有足够的\(h_i^t\)可以提供。
  • 即使有足够的\(h_i^t\),decoder最多能够预测到\(obs\_length+1\)时刻的位置,因为若要预测\(obs\_length+2\)则需要三个encoder提供对应信息,而实际上又无法提供。

根据查阅源代码,模型中Decoder每运行一步时输入都是一样的,为person scale, social scale, scene scale三个Encoder最终一次输出拼接得到的向量。这是一种Seq2Seq模型中较为简单的模型,在解码时都没有使用Decoder上一步的输出作为输入。

model = Sequential()
model.add(Merge([scene_scale, group_model, person_model], mode='sum'))
model.add(RepeatVector(predicting_frame_num))   # 复制拼接向量,使decoder每步输入都一致。
model.add(GRU(128,input_shape=(predicting_frame_num, 2),batch_size=batch_size,return_sequences=True,stateful=False,dropout=0.2))

因此回到上文中文中所给出的SS-LSTM模型的整体结构(见下图),连接线展现出三个Encoder每步运算后得到的输出都参与了Decoder输入的拼接,但这与源代码是存在矛盾的

1616500-20190808233246054-1482220918.png


Question 3

通过CNN抽取的背景图像特征\(F_t\),是否需要有下标t?(是否需要虽时间发生变化)

严格来说是需要的,但是由于Scene Scale主要用于捕获图像的非行人特征,而不同时间段图像特征的差异主要在行人,因此\(LSTM_3^{enc}\)的每一步输入可以是一致的,源代码中采用这种思路,即对于每个行人的轨迹预测,抹去了图像特征的时间因素

scene_scale = CNN(dimensions_1[1], dimensions_1[0])
scene_scale.add(RepeatVector(tsteps)) # 复制CNN输出tsteps=obs_length次,使lstm每步输入相同
scene_scale.add(GRU(hidden_size,input_shape=(tsteps, 512),batch_size=batch_size,return_sequences=False,stateful=False,dropout=0.2))


Question 4

圆形的邻近区域的数据存储方式?

如下图,对于矩形区域,Occupancy Map的形状为[4,4]或[4x4];而对于圆形区域,Map可按照自行编码习惯映射为矩阵或向量,例如,以半径为第一维度,圆角为第二维度,则Map形状为[3,4]或[3x4]

1616500-20190808233332222-591505476.png

Article:

H. Xue, D. Q. Huynh and M. Reynolds, "SS-LSTM: A Hierarchical LSTM Model for Pedestrian Trajectory Prediction," 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, 2018, pp. 1186-1194.

Code - implemented with keras:

  • link: https://github.com/xuehaouwa/SS-LSTM
  • The codes is not complete: datasets, self-defined function, program entry of train & sample and etc. So codes are not directly runnable.

转载于:https://www.cnblogs.com/sinoyou/p/11324571.html

这篇关于文献及代码阅读报告 - SS-LSTM:A Hierarchical LSTM Model for Pedestrian Trajectory Prediction...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/268839

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据