改进YOLOv5、YOLOv8系列:17.添加NAMAttention注意力机制

2023-10-22 22:30

本文主要是介绍改进YOLOv5、YOLOv8系列:17.添加NAMAttention注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最新创新点改进推荐

-💡统一使用 YOLO 代码框架,结合不同模块来构建不同的YOLO目标检测模型。

🔥 《芒果书》系列改进专栏内的改进文章,均包含多种模型改进方式,均适用于YOLOv3YOLOv4YOLORYOLOXYOLOv5YOLOv7YOLOv8 改进(重点)!!!

🔥 专栏创新点教程 均有不少同学反应和我说已经在自己的数据集上有效涨点啦!! 包括COCO数据集也能涨点

所有文章博客均包含 改进源代码部分,一键训练即可

🔥 对应专栏订阅的越早,就可以越早使用原创创新点去改进模型,抢先一步

YOLOv8 + 改进注意力机制

详细内容
参考这篇博客:点击查看详情:YOLOv5改进、YOLOv7、YOLOv8改进|YOLO改进超过多种注意力机制,全篇共计30万字(内附改进源代码),原创改进多种Attention注意力机制和Transformer自注意力机制


芒果书 点击以下链接 查看文章目录详情🔗

  • 💡🎈☁️:一、CSDN原创《芒果改进YOLO高阶指南》强烈改进涨点推荐!📚推荐指数:🌟🌟🌟🌟🌟

  • 💡🎈☁️:二、CSDN原创YOLO进阶 | 《芒果改进YOLO进阶指南》改进涨点推荐!📚推荐指数:🌟🌟🌟🌟🌟

  • 💡🎈☁️:三、CSDN独家全网首发专栏 | 《目标检测YOLO改进指南》改进涨点推荐!推荐指数:🌟🌟🌟🌟🌟


文章目录

    • 最新创新点改进推荐
  • YOLOv8 + 改进注意力机制
    • YOLOv5、YOLOv7 + 注意力机制一览
      • 之后继续更新🔥🔥🔥
  • 第一种、YOLOv5使用NAMAttention注意力机制
    • NAMAttention注意力机制原理图
    • 1.1增加以下NAMAttention.yaml文件
    • 1.2common.py配置
    • 1.3yolo.py配置
    • 1.4训练模型
    • 往期YOLO改进教程导航

YOLOv5、YOLOv7 + 注意力机制一览

YOLOv5 + ShuffleAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:12.添加ShuffleAttention注意力机制
YOLOv5 + CrissCrossAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:13.添加CrissCrossAttention注意力机制
YOLOv5 + S2-MLPv2注意力机制
博客链接🔗🌟:改进YOLOv5系列:14.添加S2-MLPv2注意力机制
YOLOv5 + SimAM注意力机制
博客链接🔗🌟:改进YOLOv5系列:15.添加SimAM注意力机制
YOLOv5 + SKAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:16.添加SKAttention注意力机制
YOLOv5 + NAMAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:17.添加NAMAttention注意力机制
YOLOv5 + SOCA注意力机制
博客链接🔗🌟:改进YOLOv5系列:18.添加SOCA注意力机制
YOLOv5 + CBAM注意力机制
博客链接🔗🌟:改进YOLOv5系列:18.添加CBAM注意力机制
YOLOv5 + SEAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:19.添加SEAttention注意力机制
YOLOv5 + GAMAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:20.添加GAMAttention注意力机制
YOLOv5 + CA注意力机制
博客链接🔗🌟:github
YOLOv5 + ECA注意力机制 博客链接🔗🌟:github
更多模块详细解释持续更新中。。。

之后继续更新🔥🔥🔥

第一种、YOLOv5使用NAMAttention注意力机制

NAMAttention注意力机制原理图

在这里插入图片描述

1.1增加以下NAMAttention.yaml文件

# YOLOv5 🚀 YOLOair, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[-1, 1, NAMAttention, [1024]],# 修改[[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

1.2common.py配置

./models/common.py文件增加以下模块

import torch.nn as nn
import torch
from torch.nn import functional as Fclass Channel_Att(nn.Module):def __init__(self, channels, t=16):super(Channel_Att, self).__init__()self.channels = channelsself.bn2 = nn.BatchNorm2d(self.channels, affine=True)def forward(self, x):residual = xx = self.bn2(x)weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())x = x.permute(0, 2, 3, 1).contiguous()x = torch.mul(weight_bn, x)x = x.permute(0, 3, 1, 2).contiguous()x = torch.sigmoid(x) * residual #return xclass NAMAttention(nn.Module):def __init__(self, channels, out_channels=None, no_spatial=True):super(NAMAttention, self).__init__()self.Channel_Att = Channel_Att(channels)def forward(self, x):x_out1=self.Channel_Att(x)return x_out1  

1.3yolo.py配置

在 models/yolo.py文件夹下

  • 定位到parse_model函数中
  • for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):内部
  • 对应位置 下方只需要新增以下代码
elif m is NAMAttention:c1, c2 = ch[f], args[0]if c2 != no:c2 = make_divisible(c2 * gw, 8)args = [c1, *args[1:]]

1.4训练模型

python train.py --cfg NAMAttention.yaml

往期YOLO改进教程导航

11.改进YOLOv5系列:11.ConvNeXt结合YOLO | CVPR2022 多种搭配,即插即用 | Backbone主干CNN模型

10.改进YOLOv5系列:10.最新HorNet结合YOLO应用首发! | ECCV2022出品,多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互

9.改进YOLOv5系列:9.BoTNet Transformer结构的修改

8.改进YOLOv5系列:8.增加ACmix结构的修改,自注意力和卷积集成

7.改进YOLOv5系列:7.修改DIoU-NMS,SIoU-NMS,EIoU-NMS,CIoU-NMS,GIoU-NMS

6.改进YOLOv5系列:6.修改Soft-NMS,Soft-CIoUNMS,Soft-SIoUNMS

5.改进YOLOv5系列:5.CotNet Transformer结构的修改

4.改进YOLOv5系列:4.YOLOv5_最新MobileOne结构换Backbone修改

3.改进YOLOv5系列:3.Swin Transformer结构的修改

2.改进YOLOv5系列:2.PicoDet结构的修改

1.改进YOLOv5系列:1.多种注意力机制修改

这篇关于改进YOLOv5、YOLOv8系列:17.添加NAMAttention注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/263994

相关文章

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核