python 四分卫数_NFL 2020预览与Python四分卫

2023-10-22 15:40

本文主要是介绍python 四分卫数_NFL 2020预览与Python四分卫,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python 四分卫数

NFL 2020 season is coming soon. For preview this season, I’m going to visualize some quarterbacks data using 2019 dataset.

NFL 2020赛季即将到来。 为了预览本季,我将使用2019年数据集可视化一些四分卫数据。

1.概述 (1. Overview)

In this article, I’m going to use this dataset as below. Thanks to Mr. Ron Yurko.

在本文中,我将使用以下数据集。 感谢Ron Yurko先生。

There is play-by-play dataset of pre-season, regular season and play-off. I’m going to use only regular season and visualize some quarterback stats. What kind of type? Pocket passer or Mobile QB? How is their performance? How is it when they are in the specific situation such as quarter, down and score behind?

有季前,常规赛和附加赛的逐项比赛数据集。 我将只使用常规赛季并可视化一些四分卫的数据。 什么样的类型? 口袋路人还是手机QB? 他们的表现如何? 当他们处在特定情况下(如四分之一,下降,得分落后)时,情况如何?

OK, Let’s get down to implementation.

好的,让我们开始实施。

2.预处理 (2. Preprocessing)

import pandas as pd
pd.set_option(“max_columns”, 400)
pbp = pd.read_csv(“play_by_play_data/regular_season/reg_pbp_2019.csv”)
roster = pd.read_csv(“roster_data/regular_season/reg_roster_2019.csv”)

Filter with quarterbacks.

用四分卫过滤。

qb = roster[roster.position == “QB”].sort_values(“full_player_name”).reset_index(drop=True)

See the dataframe info of pbp dataset.

查看pbp数据集的数据框信息。

pbp.info()

<class ‘pandas.core.frame.DataFrame’> RangeIndex: 45546 entries, 0 to 45545 Columns: 256 entries, play_id to defensive_extra_point_conv dtypes: float64(130), int64(21), object(105) memory usage: 89.0+ MB

<class'pandas.core.frame.DataFrame'> RangeIndex:45546个条目,0到45545列:256个条目,play_id到defensive_extra_point_conv dtypes:float64(130),int64(21),object(105)内存使用量:89.0+ MB

It’s too large to visualize quarterback data, so narrow down.

它太大而无法可视化四分卫数据,因此请缩小范围。

pbp_custom = pbp[[
“game_id”
,”game_half”
,”qtr”
,”time”
,”posteam”
,”yardline_100"
,”down”
,”ydstogo”
,”two_point_attempt”
,”yards_gained”
,”air_yards”
,”yards_after_catch”
,”play_type”
,”first_down_pass”
,”first_down_rush”
,”qb_hit”
,”rush_attempt”
,”pass_attempt”
,”complete_pass”
,”incomplete_pass”
,”sack”
,”touchdown”
,”interception”
,”pass_touchdown”
,”rush_touchdown”
,”pass_length”
,”pass_location”
,”passer_player_id”
,”passer_player_name”
,”rusher_player_id”
,”rusher_player_name”
]].sort_values(
[
“game_id”
,”game_half”
,”qtr”
,”time”
]
,ascending=[
True
,True
,True
,False
]
)

Aggregate this data as passing stats.

将此数据汇总为通过状态。

#Don’t count sack yards for player’s stats
pbp_custom.loc[pbp_custom.sack == 1, “yards_gained”] = 0#Aggregate by player, quarter and down
qb_pass_stats = pbp_custom[
(pbp_custom.passer_player_id.isin(qb.gsis_id)) #only QB
& (pbp_custom.two_point_attempt == 0) #exclude two-point conversion
].groupby(
[
“passer_player_id”
,”qtr”
,”down”
]
,as_index=False
).agg(
{
“complete_pass”: “sum”
,”yards_gained”: “sum”
,”first_down_pass”: “sum”
,”pass_touchdown”: “sum”
,”incomplete_pass”: “sum”
,”sack”: “sum”
,”interception”: “sum”
}
)#Create new columns
qb_pass_stats[“pass_attempt”] = qb_pass_stats[“complete_pass”] + qb_pass_stats[“incomplete_pass”] + qb_pass_stats[“interception”]
qb_pass_stats[“complete_rate”] = round(
qb_pass_stats[“complete_pass”] / qb_pass_stats[“pass_attempt”]
, 3
) * 100#Aggregate by player
qb_pass_stats_season = qb_pass_stats.groupby(
[“passer_player_id”]
,as_index=False
).agg(
{
“pass_attempt”: “sum”
,“complete_pass”: “sum”
,”yards_gained”: “sum”
,”first_down_pass”: “sum”
,”pass_touchdown”: “sum”
,”incomplete_pass”: “sum”
,”sack”: “sum”
,”interception”: “sum”
}
)#Create new columns
qb_pass_stats_season[“complete_rate”] = round(
qb_pass_stats_season[“complete_pass”] / qb_pass_stats_season[“pass_attempt”]
, 3
) * 100#only who exceed 2000 yards
qb_pass_stats_season = qb_pass_stats_season[qb_pass_stats_season.yards_gained >= 2000]
Image for post
qb_pass_stats[[“passer_player_id”, “qtr”, “down”, “pass_attempt”, “complete_pass”, “yards_gained”]].head()
qb_pass_stats [[“ passer_player_id”,“ qtr”,“ down”,“ pass_attempt”,“ complete_pass”,“ yards_gained”]]。head()
Image for post
qb_pass_stats_season[[“passer_player_id”,”pass_attempt”,”complete_pass”,”yards_gained”]].sort_values([“yards_gained”], ascending=False).head()
qb_pass_stats_season [[“ passer_player_id”,“ pass_attempt”,“ complete_pass”,“ yards_gained”]]。sort_values([“ yards_gained”],ascending = False).head()

Top is Jameis Winston with 5109 yards.

最高的是5109码的Jameis Winston。

Do the same with rushing. “yards_gained” doesn’t include lateral rush, please note that.

匆匆做同样的事情。 “ yards_gained”不包括横向奔波,请注意。

#Aggregate by player, quarter and down
qb_rush_stats = pbp_custom[
pbp_custom.rusher_player_id.isin(
qb_pass_stats_season.passer_player_id
)].groupby(
[
“rusher_player_id”
,”qtr”
,”down”
]
,as_index=False
).agg(
{
“play_type”: “count”
,”yards_gained”: “sum”
,”first_down_rush”: “sum”
,”rush_touchdown”: “sum”
}
)#Aggregate by player
qb_rush_stats_season = qb_rush_stats.groupby(
[
“rusher_player_id”
]
,as_index=False
).agg(
{
“rush_attempt”: “sum”
,”yards_gained”: “sum”
,”first_down_rush”: “sum”
,”rush_touchdown”: “sum”
}
)
Image for post
qb_rush_stats[[“rusher_player_id”, “qtr”, “down”, “yards_gained”]].head()
qb_rush_stats [[“ rusher_player_id”,“ qtr”,“ down”,“ yards_gained”]]。head()
Image for post
qb_rush_stats_season[[“rusher_player_id”, “yards_gained”]].sort_values([“yards_gained”], ascending=False).head()
qb_rush_stats_season [[“ rusher_player_id”,“ yards_gained”]]。sort_values([“ yards_gained”],ascending = False).head()

Top is of cource Lamar Jackson with 1206 yards.

顶部是库拉(Lamar Jackson)的1206码码。

Merge passing dataset and rushing dataset, also merge player dataset.

合并通过数据集和紧急数据集,也合并玩家数据集。

#Merge pass stats and rush stats datasets
qb_stats_season = pd.merge(
qb_pass_stats_season
,qb_rush_stats_season
,left_on=”passer_player_id”
,right_on=”rusher_player_id”
,how=”inner”
,suffixes=[“_passing”, “_rushing”]
).sort_values(“yards_gained_passing”, ascending=False)#Merge stats and players datasets
qb_stats_season = pd.merge(
qb_stats_season
,qb
,left_on="passer_player_id"
,right_on="gsis_id"
,how="inner"
)qb_stats_season = qb_stats_season.rename(columns={"passer_player_id": "player_id"})#Create new columns
qb_stats_season["yards_gained"] = qb_stats_season["yards_gained_passing"] + qb_stats_season["yards_gained_rushing"]qb_stats_season["touchdown"] = qb_stats_season["pass_touchdown"] + qb_stats_season["rush_touchdown"]
Image for post
qb_stats_season[[“player_id”, “full_player_name”, “team”, “yards_gained”, “yards_gained_passing”, “yards_gained_rushing”]].head()
qb_stats_season [[[“ player_id”,“ full_player_name”,“ team”,“ yards_gained”,“ yards_gained_pa​​ssing”,“ yards_gained_rushing”]]。head()

3.可视化 (3. Visualization)

Let’s visualize quarterback playing style. Describe passing yards and rushing yards using scatter plot.

让我们可视化四分卫的比赛风格。 使用散点图描述通过码和冲码。

%matplotlib inline
import matplotlib.pyplot as pltwith plt.rc_context(
{
"axes.edgecolor":"white"
,"xtick.color":"white"
, "ytick.color":"white"
, "figure.facecolor":"white"
}
):
fig = plt.figure(figsize=(15, 12), facecolor="black")
ax = fig.add_subplot(111, facecolor="black")#Plot scatter
s = ax.scatter(
qb_stats_season["yards_gained_passing"]
,qb_stats_season["yards_gained_rushing"]
,s=200
,alpha=0.5
,c=(qb_stats_season["sack"] + qb_stats_season["interception"])
,cmap="bwr"
,marker="D"
)
ax.set_xlabel("Pass Yds", color="white")
ax.set_ylabel("Rush Yds", color="white")
ax.set_xlim(2400, 5200)
ax.set_ylim(-100, 1300)#Plot player name as text
for _, qb_data in qb_stats_season.iterrows():
ax.text(
qb_data.yards_gained_passing
,qb_data.yards_gained_rushing
,qb_data.full_player_name
,verticalalignment="center"
,horizontalalignment="center"
,fontsize=13
,color="white"
)#Colorbar settings
cb = plt.colorbar(s)
cb.set_label("Sack + Interception", color="white", size=20)
cb.outline.set_edgecolor("white")
plt.setp(plt.getp(cb.ax.axes, 'yticklabels'), color="white")plt.title("QB Type", color="white")
Image for post

X-axis is passing yards and Y-axis is rushing yards. It’s strange to be defined different scale between x-axis and y-axis, but this is for visibility.

X轴是经过码,Y轴是冲码。 在x轴和y轴之间定义不同的比例很奇怪,但这是为了提高可见性。

I also colored each marker, which is total amount of sack and interception. Red, such as Winston and Murray, is more sacked and intercepted while blue, such as Mahomes and Brees, is less sacked and intercepted.

我还为每个标记着色,这是麻袋和拦截物的总量。 红色(例如Winston和Murray)被解雇和被拦截,而蓝色(例如Mahomes和Brees)被解雇和被拦截。

We can find out:

我们可以找到:

  • Winston has the highest passing yards but was more sacked and intercepted.

    温斯顿传球码最高,但被解雇和拦截的次数更多。
  • Jackson is absolutely mobile QB and was also less sacked and intercepted.

    杰克逊绝对是行动QB,也没有那么被解雇和被拦截。
  • Mahomes and Brees was much less sacked and intercepted but not many passing yards.

    Mahomes和Brees被解雇和拦截的次数要少得多,但传球码并不多。
  • Murray, Watson and Wilson is good at both?

    默里,沃森和威尔逊都擅长吗?

Next, how many yards they gained while they were sacked or intercepted?

接下来,他们被解雇或拦截时获得了多少码?

Calculate yards gained per sacked and intercepted and visualize it using histogram.

计算每个被解雇和拦截的码数,并使用直方图将其可视化。

#Create new column
qb_stats_season[“gained_per_sack_and_interception”] = round(
qb_stats_season[“yards_gained”] / (qb_stats_season[“sack”] + qb_stats_season[“interception”])
,1
)qb_stats_season = qb_stats_season.sort_values(“gained_per_sack_and_interception”, ascending=True).reset_index(drop=True)with plt.rc_context(
{
"axes.edgecolor":"white"
,"xtick.color":"white"
, "ytick.color":"white"
, "figure.facecolor":"white"
}
):
fig = plt.figure(figsize=(10, 10), facecolor=”black”)
ax = fig.add_subplot(111, facecolor=”black”)#Plot horizontal histogram
ax.barh(
qb_stats_season.full_player_name
,qb_stats_season.gained_per_sack_and_interception
,color=”grey”
)#Plot stats as text on histogram
for index, qb_data in qb_stats_season.iterrows():
ax.text(
qb_data.gained_per_sack_and_interception
,index
,str(qb_data.yards_gained) + “ / “ + str(int(qb_data.sack) + int(qb_data.interception))
,color=”white”
,ha=”center”
,va=”right”
)
plt.title(“Never Fail QB Ranks”, color=”white”)
ax.set_xlabel(“Gained / (Sack + Interception)”, color=”white”)
Image for post

How stable Mahomes is. Brees, Prescott and Jackson are also outstanding. Meanwhile, Winston and Murray has many yards but we can say they are not stable.

Mahomes有多稳定。 布雷斯,普雷斯科特和杰克逊也很出色。 同时,温斯顿(Winston)和穆雷(Murray)有很多码,但是我们可以说它们不稳定。

By the way, how about each quarter? Aggregate data again.

顺便问一下,每个季度怎么样? 再次汇总数据。

qb_pass_stats_qtr = qb_pass_stats.groupby(
[
“passer_player_id”
,”qtr”
]
,as_index=False
).agg(
{
“complete_pass”: “sum”
,”yards_gained”: “sum”
,”first_down_pass”: “sum”
,”pass_touchdown”: “sum”
,”incomplete_pass”: “sum”
,”sack”: “sum”
,”interception”: “sum”
}
)
qb_pass_stats_qtr[“pass_attempt”] = qb_pass_stats_qtr[“complete_pass”] + qb_pass_stats_qtr[“incomplete_pass”] + qb_pass_stats_qtr[“interception”]qb_pass_stats_qtr[“complete_rate”] = round(qb_pass_stats_qtr[“complete_pass”] / qb_pass_stats_qtr[“pass_attempt”], 3) * 100qb_rush_stats_qtr = qb_rush_stats.groupby(
[
"rusher_player_id"
,"qtr"
]
,as_index=False
).agg(
{
"rush_attempt": "sum"
,"yards_gained": "sum"
,"first_down_rush": "sum"
,"rush_touchdown": "sum"
}
)qb_stats_qtr = pd.merge(
qb_pass_stats_qtr
,qb_rush_stats_qtr
,left_on=["passer_player_id","qtr"]
,right_on=["rusher_player_id","qtr"]
,how="inner"
,suffixes=["_passing", "_rushing"]
)qb_stats_qtr = pd.merge(
qb_stats_qtr
,qb
,left_on="passer_player_id"
,right_on="gsis_id"
,how="inner"
)qb_stats_qtr["yards_gained"] = qb_stats_qtr["yards_gained_passing"] + qb_stats_qtr["yards_gained_rushing"]qb_stats_qtr["touchdown"] = qb_stats_qtr["pass_touchdown"] + qb_stats_qtr["rush_touchdown"]qb_stats_qtr = qb_stats_qtr.rename(columns={"passer_player_id": "player_id"})
Image for post
qb_stats_qtr[[“player_id”, “full_player_name”, “team”, “qtr”, “yards_gained”, “yards_gained_passing”, “yards_gained_rushing”]].head()
qb_stats_qtr [[[“ player_id”,“ full_player_name”,“ team”,“ qtr”,“ yards_gained”,“ yards_gained_pa​​ssing”,“ yards_gained_rushing”]]。head()
qb_stats_4q = qb_stats_qtr[qb_stats_qtr.qtr == 4].sort_values(“yards_gained”, ascending=False)with plt.rc_context(
{
"axes.edgecolor":"white"
,"xtick.color":"white"
, "ytick.color":"white"
, "figure.facecolor":"white"
}
):
fig = plt.figure(figsize=(15, 5), facecolor=”black”)
ax = fig.add_subplot(111, facecolor=”black”)s = ax.scatter(
qb_stats_4q.yards_gained_passing
,qb_stats_4q.yards_gained_rushing
,s=200
,alpha=0.5
,c=(qb_stats_4q.sack + qb_stats_4q.interception)
,cmap=”bwr”
,marker=”D”
)ax.set_xlabel(“Pass Yds”, color=”white”)
ax.set_ylabel(“Rush Yds”, color=”white”)for _, qb_data in qb_stats_4q.iterrows():
ax.text(
qb_data.yards_gained_passing
,qb_data.yards_gained_rushing
,qb_data.full_player_name
,verticalalignment=”center”
,horizontalalignment=”center”
,fontsize=13
,color=”white”
)cb = plt.colorbar(s)
cb.set_label(“Sack + Interception”, color=”white”, size=20)
cb.outline.set_edgecolor(“white”)
plt.setp(plt.getp(cb.ax.axes, ‘yticklabels’), color=”white”)
plt.title(“QB Type in 4Q”, color=”white”)
Image for post

Prescott and Mahomes are in constrast. Compare the gained yards in each quarter. We can also say that most QBs are less sacked and intercepted because of 4Q. (Winston and Mayfield are gambler?)

普雷斯科特(Prescott)和马荷姆斯(Mahomes)持反对意见。 比较每个季度获得的码数。 我们也可以说,由于Q,大多数QB的解雇和拦截较少。 (温斯顿和梅菲尔德是赌徒?)

mahomes_stats_qtr = qb_stats_qtr[qb_stats_qtr.player_id == “00–0033873”]
prescott_stats_qtr = qb_stats_qtr[qb_stats_qtr.player_id == “00–0033077”]with plt.rc_context(
{
"axes.edgecolor":"white"
,"xtick.color":"white"
, "ytick.color":"white"
, "figure.facecolor":"white"
}
):
fig = plt.figure(figsize=(10, 5), facecolor=”black”)
ax_mahomes = fig.add_subplot(121, facecolor=”black”)
ax_prescott = fig.add_subplot(122, facecolor=”black”)#Draw pie chart of Mahomes
wedges, _, _ = ax_mahomes.pie(
mahomes_stats_qtr.yards_gained
,labels=[“1Q”,”2Q”,”3Q”,”4Q”]
,textprops={“color”: “white”}
,wedgeprops={“linewidth”: 3}
,startangle=90
,counterclock=False
,autopct=”%1.1f%%”
)
ax_mahomes.text(
0, 0
,qb_stats_season[“yards_gained”][qb_stats_season.player_id == “00–0033873”].values[0]
,color=”white”
,ha=”center”
,va=”center”
,fontsize=20
)
plt.setp(wedges, width=0.2)#Draw pie chart of Prescott
wedges, _, _ = ax_prescott.pie(
prescott_stats_qtr.yards_gained
,labels=[“1Q”,”2Q”,”3Q”,”4Q”]
,textprops={“color”: “white”}
,wedgeprops={“linewidth”: 3}
,startangle=90
,counterclock=False
,autopct=”%1.1f%%”ax_prescott.text(
0, 0
,qb_stats_season[“yards_gained”][qb_stats_season.player_id == “00–0033077”].values[0]
,color=”white”
,ha=”center”
,va=”center”
,fontsize=20
)
plt.setp(wedges, width=0.2)ax_mahomes.set_title(“Mahomes”, color=”white”)
ax_prescott.set_title(“Prescott”, color=”white”)
Image for post

Can we describe Mahomes is “pre-emptive” QB and Prescott is “rising” QB?

我们能否描述Mahomes是“先发制人”的QB而Prescott是“崛起”的QB?

In addition, how about when the team is in adversity (score behind)?

此外,团队何时处于逆境中(得分落后)?

Image for post
Image for post

Oh, Mahomes is also outstanding in adversity… Prescott is too. Stafford is 3rd while he is 8th in gross and Garoppolo is 7th while 16th in gross. We can say they are strong in adversity.

哦,Mahomes在逆境中也很出色... Prescott也是。 斯塔福德排名第3,而他排名第8,加洛波罗排名第7,而排名第16。 我们可以说他们在逆境中很强。

I can do as much as I want, but leave off around here. Will Mahomes be MVP again with outstanding stability? Prescott will lead Dallas to Superbowl? How will Winston achieve at Saints alongside Brees? Can Murray and Mayfield improve stability and become the best QB in NFL?

我可以做很多我想做的事,但是不要在这里闲逛。 Mahomes会再次以出色的稳定性成为MVP吗? 普雷斯科特会带领达拉斯进入超级碗吗? 温斯顿将如何与布雷斯一起在圣徒队取得成就? Murray和Mayfield能否提高稳定性并成为NFL中最好的QB?

Thank you for reading!!

谢谢您的阅读!!

翻译自: https://medium.com/the-sports-scientist/nfl-2020-preview-with-python-quarterback-24345b76b97a

python 四分卫数


http://www.taodudu.cc/news/show-8033477.html

相关文章:

  • 个人排位赛--a 物理题,水题 URAL - 1939
  • HDU - 1260 Tickets
  • 【英语词组】恋恋不忘Day 3-2
  • 4.4学习心得
  • uni-app项目 getLocation:fail the api need to be declared in the requiredPrivateInfos field in app.jso
  • JSON schema for the TypeScript compiler‘s configuration file Problems loading reference ‘https://jso
  • Java实现世代距离_反世代距离评价指标IGD
  • 技能学习:学习使用Node.js + Vue.js,开发前端全栈网站-14-2.购买域名服务器并解析域名到服务器
  • 自己拥有一台服务器可以做哪些很酷的事情1——建博客
  • 阿里云云效研发协同服务相关协议条款 | 云效
  • 阿里云首次年度盈利,国内云厂商何时迎来集体回报期?
  • Linux云服务器的租用以及利用云盘进行数据的传输(智云星)
  • 服务器全套基础知识:包含基本概念,作用,服务器选择,服务器管理等
  • 关于腾讯云、阿里云“安全”的话题
  • 移动站点开发有哪几种?响应式、独立移动端还是RESS怎么选择?
  • Unity读取资源方法(Resources.load方法)
  • Unity 场景资源level0 level 及sharedassets0 sharedasset1
  • Javascript中的60个经典技巧
  • unity资源加载和卸载(脚本加载卸载,资源序列化后的结构,bundle内的序列化结构)
  • Unity之减少发布包大小
  • Unity 报错之 接入YomboTGSDK后打包报错:mainTemplate.gradle needs to be updated(property ‘unityStreamingAssets‘)
  • Nginx 负载服务
  • hcia第二天作业 静态路由
  • php mysql 手册_(十二)php参考手册---MySQLi函数(php操作MySQL)(仅学习)
  • 医药问答系统(四)执行neo4j查询语句并拼接成自然语言
  • RESS:响应式设计 + 服务端组件
  • React + RESS =更多
  • U3D解包针对2019后.assets .assets.resS的一次解包记录
  • ArcGIS地图结合eCharts 实现迁徙图
  • 利用ECharts3来实现ECharts2实例中的模拟迁徙效果,即背景地图为百度地图。
  • 这篇关于python 四分卫数_NFL 2020预览与Python四分卫的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/262356

    相关文章

    Python跨文件实例化、跨文件调用及导入库示例代码

    《Python跨文件实例化、跨文件调用及导入库示例代码》在Python开发过程中,经常会遇到需要在一个工程中调用另一个工程的Python文件的情况,:本文主要介绍Python跨文件实例化、跨文件调... 目录1. 核心对比表格(完整汇总)1.1 自定义模块跨文件调用汇总表1.2 第三方库使用汇总表1.3 导

    基于Python实现进阶版PDF合并/拆分工具

    《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

    Python实现Word转PDF全攻略(从入门到实战)

    《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

    基于Python Playwright进行前端性能测试的脚本实现

    《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

    使用Python的requests库调用API接口的详细步骤

    《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

    Python清空Word段落样式的三种方法

    《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

    Python调用LibreOffice处理自动化文档的完整指南

    《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

    把Python列表中的元素移动到开头的三种方法

    《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

    Python按照24个实用大方向精选的上千种工具库汇总整理

    《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

    Python标准库datetime模块日期和时间数据类型解读

    《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(