Bellman-Ford求解带有负权图的单源最短路径问题

2023-10-22 15:10

本文主要是介绍Bellman-Ford求解带有负权图的单源最短路径问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文参考了书目《算法笔记》

 

 

对于一个图如果存在零环正环,利用Bellman-Ford算法不会影响到最短路径的求解;如果一个图出现了负环,则会导致恶性循环,会导致dis[u]出现负无穷,永远也求解不出来,但如果从源点出发,无法到达负环,则最短路径的求解不会收到影响(不在负环上的dis[u]可以求出确切值,在负环上的点v,标记dis[v]为不可达就行了)

 

下面是代码:

#include"stdafx.h"
#include<cstdio>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 500;
const int INF = 1e9;
int Vertexnum, Edgenum, Start;//顶点数、边数、起点
struct node {//结点结构体int v;int weight;
};
vector<node> adj[maxn];//邻接表存储图
int dis[maxn];
bool BellmanFord(int s) {//s为源点fill(dis, dis + maxn, INF);dis[s] = 0;for (int i = 0; i < Vertexnum - 1; i++) {//进行Vertexnum-1次松弛操作,以确保所有的点都松弛到最佳情况for (int u = 0; u < Vertexnum; u++) {//每轮操作都遍历所有的边for (int j = 0; j < adj[u].size(); j++) {int v = adj[u][j].v;int weight = adj[u][j].weight;if (dis[u] + weight < dis[v]) {dis[v] = dis[u] + weight;}}}}//已经松弛完毕,下面进行验证是否还能被松弛,如果还能被松弛,则说明此图存在负环for (int u = 0; u < Vertexnum; u++) {for (int j = 0; j < adj[u].size(); j++) {int v = adj[u][j].v;int weight = adj[u][j].weight;if (dis[u] + weight < dis[v]) {//如果还能被松弛return false;//则此图存在负环,返回false}}}return true;//数组d的所有值已经达到最优
}
int main() {cin >> Vertexnum >> Edgenum >> Start;int start, end, weight;//起点、终点、边权for (int i = 0; i < Edgenum; i++) {cin >> start >> end >> weight;node N;N.v = end;N.weight = weight;adj[start].push_back(N);}bool flag = BellmanFord(Start);if (flag == false) cout << "此图存在负环";else {for (int i = 0; i < Vertexnum; i++) {cout << dis[i] << " ";}}return 0;
}

分析:Bellman-Ford算法需要遍历所有的边,显然使用邻接表会比较方便,时间复杂度为O(VE),但如果使用邻接矩阵,会使时间复杂度达到O(V的三次方)。时间复杂度O(VE)难免有些高,下节将对Bellman-Ford算法进行优化(即SPFA算法)

思路:可以把源点s作为一棵树的根结点,把其它结点按照最短路径的结点顺序连接,就会生成一棵最短路径树。在短路径树中,从源点(根结点)s到达其余各顶点的路径就是原图中对应的最短路径,且原图和源点一旦确定,最短路径树也就确定了。由于在初始状态下dis[s]为0,因此在接下来的步骤中dis[s]不会被改变(也就是说最短路径树中的第一层的dis值被确定),接着,通过Bellman-Ford算法的第一轮操作之后,最短路径树中的第二层顶点的dis值也会被确定下来,然后进行第二轮操作,于是第三层顶点的dis值也被确定下来,这样计算直到最后一层顶点dis值确定,由于最短路径树的层数不超过V层,因此Bellman-Ford算法的松弛操作不会超过V-1轮

 

 

 

 

转:

 

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德•贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特•福特(Lester Ford)发明。Bellman-Ford算法的流程如下:

给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,

  • 数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;
  • 以下操作循环执行至多n-1次,n为顶点数:
    对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
    若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;
  • 为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

首先介绍一下松弛计算。如下图:

这里写图片描述

松弛计算之前,点B的值是8,但是点A的值加上边上的权重2,得到5,比点B的值(8)小,所以,点B的值减小为5。这个过程的意义是,找到了一条通向B点更短的路线,且该路线是先经过点A,然后通过权重为2的边,到达点B。
当然,如果出现以下情况

这里写图片描述

则不会修改点B的值,因为3+4>6。

Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。

之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。
考虑如下的图:

这里写图片描述

经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)

这里写图片描述

第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。

在回过来看一下bellman-ford算法的第三部分,遍历所有边,检查是否存在d(v) > d (u) + w(u,v)。因为第二部分循环的次数是定长的,所以如果存在无法收敛的情况,则肯定能够在第三部分中检查出来。比如

此时,点A的值为-2,点B的值为5,边AB的权重为5,5 > -2 + 5. 检查出来这条边没有收敛。

所以,Bellman-Ford算法可以解决图中有权为负数的边的单源最短路径问。

以下是Bellman-Ford代码:

 

/*
* About:  Bellman-Ford算法
* Author: Tanky Woo
* Blog:   www.WuTianqi.com
*/#include <iostream>
using namespace std;
const int maxnum = 100;
const int maxint = 99999;// 边,
typedef struct Edge{int u, v;    // 起点,重点int weight;  // 边的权值
}Edge;Edge edge[maxnum];     // 保存边的值
int  dist[maxnum];     // 结点到源点最小距离int nodenum, edgenum, source;    // 结点数,边数,源点// 初始化图
void init()
{// 输入结点数,边数,源点cin >> nodenum >> edgenum >> source;for(int i=1; i<=nodenum; ++i)dist[i] = maxint;dist[source] = 0;for(int i=1; i<=edgenum; ++i){cin >> edge[i].u >> edge[i].v >> edge[i].weight;if(edge[i].u == source)          //注意这里设置初始情况dist[edge[i].v] = edge[i].weight;}
}// 松弛计算
void relax(int u, int v, int weight)//对边edge(u,v)进行松弛
{if(dist[v] > dist[u] + weight)dist[v] = dist[u] + weight;
}bool Bellman_Ford()
{for(int i=1; i<=nodenum-1; ++i)//执行nodenum-1轮松弛for(int j=1; j<=edgenum; ++j)//松弛所有边relax(edge[j].u, edge[j].v, edge[j].weight);bool flag = 1;// 判断是否有负环路for(int i=1; i<=edgenum; ++i)if(dist[edge[i].v] > dist[edge[i].u] + edge[i].weight){flag = 0;break;}return flag;
}
int main()
{//freopen("input3.txt", "r", stdin);init();if(Bellman_Ford())for(int i = 1 ;i <= nodenum; i++)cout << dist[i] << endl;return 0;
}

补充:
考虑:为什么要循环V-1次? (V为顶点数)
答:因为最短路径肯定是个简单路径,不可能包含回路的,
如果包含回路,且回路的权值和为正的,那么去掉这个回路,可以得到更短的路径
如果回路的权值是负的,那么肯定没有解了

图有n个点,又不能有回路
所以最短路径最多n-1边

 

又因为每次循环,至少relax一边
所以最多n-1次就行了

 

 

 

个人补充:(循环n-1轮操作)

 

第一轮:对所有的边进行松弛操作,在这些松弛了的边里面,肯定能有一边已经松弛到最佳状态(其实是至少有一边)

 

第二轮:由于第一轮松弛,有一边(这里假设边的终点为u)已经松弛到最佳,那么就有可能导致从u出发使得:dis[u]+weight[u,v]<dis[v];(和dijkstra算法的思想一样—),那么就令dis[v]=dis[u]+weight[u,v],这就使得从u出发到达v的这条边松弛到了最佳

 

第三轮:,,,

 

 

,,,

(连锁反应)

 

 

 

 

 

 

这篇关于Bellman-Ford求解带有负权图的单源最短路径问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/262225

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx