OpenCV-Python Tutorials - 4.13. 霍夫线变换

2023-10-22 13:40

本文主要是介绍OpenCV-Python Tutorials - 4.13. 霍夫线变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV-Python Tutorials(4.0.0)

OpenCV-Python Tutorials官方英文教程
GitHub:中文翻译
如果对你有帮助, 请在GitHub上Star该项目, 转载请注明出处。

目标:

  • 理解霍夫变换的概念
  • 如何使用它来检测图像中的线条
  • 函数:cv.HoughLines()cv.HoughLinesP()

理论

霍夫变换是一种流行的检测形状的技术,如果你可以用数学形式表示形状的话。它可以检测形状,即使它是破碎或扭曲了一点。我们来看看它是如何作用于直线的。

线可以表示为 y = m x + c y=mx+c y=mx+c或以参数形式表示为 ρ = x c o s θ + y s i n θ \rho =x\ cos\theta +y\ sin\theta ρ=x cosθ+y sinθ其中 ρ \rho ρ是从原点到线的垂直距离, θ \theta θ是由该垂直线和水平轴形成的角度 以逆时针方向测量(该方向因你表示坐标系的方式而异。此表示在OpenCV中使用)。如图:

image69

因此,如果线在原点以下通过,它将具有正rho和小于180的角度。如果它超过原点,而不是采用大于180的角度,则角度小于180,并且rho被认为是否定的。任何垂直线都有0度,水平线有90度。

现在让我们看看霍夫变换如何为线条工作。任何线都可以用这两个术语表示, ( ρ , θ ) \left ( \rho ,\theta \right ) (ρ,θ)。因此,首先它创建一个2D数组或累加器(以保存两个参数的值),并且最初设置为0。令行表示 ρ \rho ρ,列表示 θ \theta θ。阵列的大小取决于你需要的准确度。假设你希望角度精度为1度,则需要180列。对于 ρ \rho ρ,可能的最大距离是图像的对角线长度。因此,取一个像素精度,行数可以是图像的对角线长度。

考虑一个100x100的图像,中间有一条水平线。取第一点。你知道它的(x,y)值。现在在线方程中,将值 θ = 0 , 1 , 2 , ⋯   , 180 \theta= 0,1,2,\cdots ,180 θ=0,1,2,,180并检查你得到的 ρ \rho ρ。对于每个 ( ρ , θ ) \left ( \rho ,\theta \right ) (ρ,θ)对,在我们的累加器中将其在相应的 ( ρ , θ ) \left ( \rho ,\theta \right ) (ρ,θ)单元格中增加1。所以现在在累加器中,单元格(50,90)= 1以及其他一些单元格。

现在取第二点就行了。和上面一样。增加与你获得的(rho,theta)对应的单元格中的值。这次,单元格(50,90)= 2.你实际做的是投票给 ( ρ , θ ) \left ( \rho ,\theta \right ) (ρ,θ)值。你可以继续执行此过程中的每个点。在每个点,单元格(50,90)将递增或投票,而其他单元格可能会或可能不会被投票。这样,最后,单元格(50,90)将获得最大票数。因此,如果你在累加器中搜索最大投票数,则会得到值(50,90),表示此图像中距离原点和角度为90度的距离为50。它在下面的动画中有很好的展示(图片提供:Amos Storkey)

image70

这就是霍夫变换对线条的作用。 它很简单,也许你可以自己使用Numpy来实现它。 下面是显示累加器的图像。 某些位置的亮点表示它们是图像中可能线条的参数。 (图片提供:维基百科)

image71

OpenCV中的霍夫变换

上面解释的所有内容都封装在OpenCV函数cv.HoughLines()中。 它只返回一个数组:math:(rho,theta)`values。 ρ \rho ρ以像素为单位测量, θ \theta θ以弧度为单位测量。第一个参数,输入图像应该是二进制图像,因此在应用霍夫变换之前应用阈值或使用精确边缘检测。 第二和第三参数分别是 ρ \rho ρ θ \theta θ精度。第四个参数是阈值,这意味着它应该被视为一条线的最小投票。请记住,投票数取决于该线上的点数。因此它表示应检测的最小行长度。

import cv2 as cv
import numpy as np
img = cv.imread('../data/sudoku.png')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray,50,150,apertureSize = 3)
lines = cv.HoughLines(edges,1,np.pi/180,200)
for line in lines:
rho,theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv.line(img,(x1,y1),(x2,y2),(0,0,255),2)
cv.imwrite('houghlines3.jpg',img)

窗口将如下图显示:

image72

概率Hough变换

在霍夫变换中,你可以看到即使对于具有两个参数的行,也需要大量计算。概率Hough变换是我们看到的Hough变换的优化。它没有考虑所有要点。相反,它只需要一个足以进行线检测的随机点子集。我们必须降低门槛。 请参见下图,其中比较霍夫空间中的霍夫变换和概率霍夫变换。(图片提供:Franck Bettinger的主页)

image73

OpenCV实现基于使用Matas,J。和Galambos,C。和Kittler,J.V。[122]的渐进概率Hough变换的线的鲁棒检测。 使用的函数是cv.HoughLinesP()。 它有两个新的论点。

  • minLineLength - 最小线长。 短于此的线段将被拒绝。
  • maxLineGap - 线段之间允许的最大间隙,将它们视为一条线。

最好的是,它直接返回行的两个端点。在前面的例子中,你只得到了行的参数,你必须找到所有的点。在这里,一切都是直接而简单的。

import cv2 as cv
import numpy as np
img = cv.imread('../data/sudoku.png')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray,50,150,apertureSize = 3)
lines = cv.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10)
for line in lines:
x1,y1,x2,y2 = line[0]
cv.line(img,(x1,y1),(x2,y2),(0,255,0),2)
cv.imwrite('houghlines5.jpg',img)

窗口将如下图显示:

image74

这篇关于OpenCV-Python Tutorials - 4.13. 霍夫线变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/261786

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: