YOLOv5:修改backbone为SPD-Conv

2023-10-21 20:52
文章标签 yolov5 修改 backbone conv spd

本文主要是介绍YOLOv5:修改backbone为SPD-Conv,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOv5:修改backbone为SPD-Conv

  • 前言
  • 前提条件
  • 相关介绍
  • SPD-Conv
    • YOLOv5修改backbone为SPD-Conv
      • 修改common.py
      • 修改yolo.py
      • 修改yolov5.yaml配置
  • 参考

在这里插入图片描述

前言

  • 记录在YOLOv5修改backbone操作,方便自己查阅。
  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。

SPD-Conv

  • SPD-Conv由一个空间到深度(SPD)层和一个非跨行卷积(Conv)层组成,可以应用于大多数CNN架构。SPD-Conv在不丢失可学习信息的情况下对特征图进行下采样,完全抛弃了目前广泛使用的跨行卷积和池化操作。该论文实验结果表明,在小物体和低分辨率图像上有显著的性能提高。
  • 论文地址:https://arxiv.org/abs/2208.03641
  • 官方源代码地址:https://github.com/LabSAINT/SPD-Conv
  • 有兴趣可查阅论文和官方源代码地址。

在这里插入图片描述
以下是使用Python实现SPD-Conv的简单例子,目的是方便大家理解SPD-Conv的操作。

import cv2
import torch
from torch import nn############## SPD-Conv ##############
class space_to_depth(nn.Module):# Changing the dimension of the Tensordef __init__(self, dimension=1):super().__init__()self.d = dimensiondef forward(self, x):return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
############## SPD-Conv ##############if __name__=="__main__":img_tensor = torch.Tensor([[[[ 1, 2, 3, 4],[ 5, 6, 7, 8],[ 9, 10, 11, 12],[ 13, 14, 15, 16]],[[ 1, 2, 3, 4],[ 5, 6, 7, 8],[ 9, 10, 11, 12],[ 13, 14, 15, 16]],[[ 1, 2, 3, 4],[ 5, 6, 7, 8],[ 9, 10, 11, 12],[ 13, 14, 15, 16]]]])# print('img_tensor:',img_tensor)print('img_tensor.shape:',img_tensor.shape)spd = space_to_depth()res = spd.forward(img_tensor)# print('res:',res)print('res.shape:',res.shape)
img_tensor.shape: torch.Size([1, 3, 4, 4])
res: tensor([[[[ 1.,  3.],[ 9., 11.]],[[ 1.,  3.],[ 9., 11.]],[[ 1.,  3.],[ 9., 11.]],[[ 5.,  7.],[13., 15.]],[[ 5.,  7.],[13., 15.]],[[ 5.,  7.],[13., 15.]],[[ 2.,  4.],[10., 12.]],[[ 2.,  4.],[10., 12.]],[[ 2.,  4.],[10., 12.]],[[ 6.,  8.],[14., 16.]],[[ 6.,  8.],[14., 16.]],[[ 6.,  8.],[14., 16.]]]])
res.shape: torch.Size([1, 12, 2, 2])

YOLOv5修改backbone为SPD-Conv

在这里插入图片描述

修改common.py

将以下代码,添加进common.py。

############## SPD-Conv ##############
class space_to_depth(nn.Module):# Changing the dimension of the Tensordef __init__(self, dimension=1):super().__init__()self.d = dimensiondef forward(self, x):return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
############## SPD-Conv ##############

修改yolo.py

        elif m is space_to_depth:c2 = 4 * ch[f]

在这里插入图片描述

修改yolov5.yaml配置

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Focus, [64, 3]],     # 0-P1/2[-1, 1, Conv, [128, 3, 1]],  # 1[-1,1,space_to_depth,[1]],   # 2 -P2/4[-1, 3, C3, [128]],          # 3[-1, 1, Conv, [256, 3, 1]],  # 4[-1,1,space_to_depth,[1]],   # 5 -P3/8[-1, 6, C3, [256]],          # 6[-1, 1, Conv, [512, 3, 1]],  # 7-P4/16[-1,1,space_to_depth,[1]],   # 8 -P4/16[-1, 9, C3, [512]],          # 9[-1, 1, Conv, [1024, 3, 1]], # 10-P5/32[-1,1,space_to_depth,[1]],   # 11 -P5/32[-1, 3, C3, [1024]],         # 12[-1, 1, SPPF, [1024, 5]],    # 13]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],                    # 14[-1, 1, nn.Upsample, [None, 2, 'nearest']],    # 15[[-1, 9], 1, Concat, [1]],                     # 16 cat backbone P4[-1, 3, C3, [512, False]],                     # 17[-1, 1, Conv, [256, 1, 1]],                    # 18[-1, 1, nn.Upsample, [None, 2, 'nearest']],    # 19[[-1, 6], 1, Concat, [1]],                     # 20 cat backbone P3[-1, 3, C3, [256, False]],                     # 21 (P3/8-small)[-1, 1, Conv, [256, 3, 1]],                    # 22[-1,1,space_to_depth,[1]],                     # 23 -P2/4[[-1, 18], 1, Concat, [1]],                    # 24 cat head P4[-1, 3, C3, [512, False]],                     # 25 (P4/16-medium)[-1, 1, Conv, [512, 3, 1]],                    # 26[-1,1,space_to_depth,[1]],                     # 27 -P2/4[[-1, 14], 1, Concat, [1]],                    # 28 cat head P5[-1, 3, C3, [1024, False]],                    # 29 (P5/32-large)[[21, 25, 29], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

在这里插入图片描述

参考

[1] Raja Sunkara, Tie Luo. No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects. 2022
[2] https://github.com/LabSAINT/SPD-Conv
[3] https://github.com/ultralytics/yolov5.git

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏、自然语言处理
    专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

这篇关于YOLOv5:修改backbone为SPD-Conv的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/256913

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Oracle修改端口号之后无法启动的解决方案

《Oracle修改端口号之后无法启动的解决方案》Oracle数据库更改端口后出现监听器无法启动的问题确实较为常见,但并非必然发生,这一问题通常源于​​配置错误或环境冲突​​,而非端口修改本身,以下是系... 目录一、问题根源分析​​​二、保姆级解决方案​​​​步骤1:修正监听器配置文件 (listener.

Linux中修改Apache HTTP Server(httpd)默认端口的完整指南

《Linux中修改ApacheHTTPServer(httpd)默认端口的完整指南》ApacheHTTPServer(简称httpd)是Linux系统中最常用的Web服务器之一,本文将详细介绍如何... 目录一、修改 httpd 默认端口的步骤1. 查找 httpd 配置文件路径2. 编辑配置文件3. 保存

Nginx 413修改上传文件大小限制的方法详解

《Nginx413修改上传文件大小限制的方法详解》在使用Nginx作为Web服务器时,有时会遇到客户端尝试上传大文件时返回​​413RequestEntityTooLarge​​... 目录1. 理解 ​​413 Request Entity Too Large​​ 错误2. 修改 Nginx 配置2.1

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Linux修改pip临时目录方法的详解

《Linux修改pip临时目录方法的详解》在Linux系统中,pip在安装Python包时会使用临时目录(TMPDIR),但默认的临时目录可能会受到存储空间不足或权限问题的影响,所以本文将详细介绍如何... 目录引言一、为什么要修改 pip 的临时目录?1. 解决存储空间不足的问题2. 解决权限问题3. 提

Linux文件名修改方法大全

《Linux文件名修改方法大全》在Linux系统中,文件名修改是一个常见且重要的操作,文件名修改可以更好地管理文件和文件夹,使其更具可读性和有序性,本文将介绍三种在Linux系统下常用的文件名修改方法... 目录一、引言二、使用mv命令修改文件名三、使用rename命令修改文件名四、mv命令和rename命