容斥原理公式c语言,【笔记】组合数学 - osc_3md1xrlp的个人空间 - OSCHINA - 中文开源技术交流社区...

本文主要是介绍容斥原理公式c语言,【笔记】组合数学 - osc_3md1xrlp的个人空间 - OSCHINA - 中文开源技术交流社区...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开新坑辣。。。。。

排列组合

排列:P(n,r) = n! / (n-r)! 组合:C(n,r) = n! / r!(n-r)! 圆排列:P(n,r) / r 多重集排列:

令S是一个多重集,它有k个不同类型的元素,每一个元素都有无穷重复个数。那么S的r-排列的个数为k^r。

令S是一个多重集,它有k个不同类型的元素,各元素重数为n1,n2,...,nk。设S的大小为n = n1 + n2 + ... + nk。则排列数等于n! / (n1!n2!...nk!)

抽屉原理(鸽巢原理)

wiki百科介绍 理解起来还是比较容易的,拓展有拉姆齐定理(虽然是图论上的内容)

特殊序列

掌握它们的应用和推导方式

Catalan序列

wiki百科介绍

f420ef8257447467cc9f8bd6cea23b91.png

214fbe1794f42d6d806ab1d3a3d7ccaf.png

23a78a28770f949c7a303cb2a4e68e4a.png

c44b5d47e55125ac168f965b4cf92e43.png 前20项为(OEIS中的数列A000108):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190

Stiring数

wiki百科介绍 第一类:将p个有区别的球排成k个非空的圆排列的方案数

4e22bb3ae5c94e337878adf22209fa0c.png

5260ad786591afaf0f8bfcffcabd28d6.png

4be7dead2dd2791810b3b13192d875c0.png 第二类:将p个有区别的球放到k个相同盒子中,奥球没有空盒的方案数

af0914c09d92f4c3b33369689ae048cc.png

4b911982b08b39d0942faf45a53ab062.png 两者关系:

0a7dbfe147b60a47e9ed652ea0888e08.png

容斥原理

60835765823fe76e74b7048872a5e617.png

错位排列

公式法:

c2fdb7dc5b30aefd13b9d0a618e9db25.png 递推法: 考察n≥3时的错位排列,把数字n单独拿出来看,先把n放在第n位。设P是{1,2,...,n-1}的一个排列

如果P是一个错位排列,把其中任意一个数与n交换仍然是一个错位排列,这样的情形可以得到(n-1)D_n-1个{1,2,...,n}的错位排列

如果P不是错位排列,并且只存在一个位置不符合要求(P_x = x)将x和n交换后又是一个错位排列。这里可以得到(n-1)D_n-2个{1,2,...,n}的错位排列。

其他情形都不能得到错位排列

D_n = (n-1)(D_n-1 + D_n-2) (D1 = 0, D2 = 1)

Mobius反演

NULL

棋盘多项式

母函数(生成函数)

普通型生成函数讲解 在学习FFT的时候,已经知道可以用卷积来计算生成函数计数问题,它可以针对一般的多项式计算乘积,而在整数拆分这个问题里,有n个表达式,需要做n次卷积,复杂度O(n²logn),但FFT常数是很大的,观察得知每个多项式是很有规律的,它的第i个多项式中系数为1的项都间隔了i-1个系数为0项,所以我们可以用一个每次变化i-1的k循环来遍历得到每层卷积后的多项式 指数型生成函数讲解

Polya计数定理

置换群

首先给你一个序列,假如: s = {1 2 3 4 5 6} 然后给你一个变换规则 t = {6 3 4 2 1 5} 就是每一次按照t规则变换下去 第一次:6 3 4 2 1 5 第二次:5 4 2 3 6 1 第三次:1 2 3 4 5 6 发现经过几次会变换回去,再变换下去就是循环的了,这就是一个置换群 我们可以这样表示一个置换群,比如按照上面变化规则 1->6->5->1 这些是一个轮换 2->3->4->2 这些是一个轮换 所以可以写为 t = { {1 6 5},{ 2 3 4 } }

如果一个状态经过置换f后跟原来相同, 即S[1]=S[a1],S[2]=S[a2],…,S[n]=S[an] 则称该状态为f 的不动点。

题目中常常出现“本质不同的方案数”,一般是指等价类的数目,题目定义一个等价关系,满足等价关系的元素属于同一等价类。等价关系通常是一个置换集合F,如果一个置换能把其中一个方案映射到另一个方案,则二者是等价的。 那么,置换构成的群就是置换群,就是交换排列顺序而已

二面体群

wiki百科介绍 翻转本质上也是一种置换规则

557d1d72a7cbba8d3c9a5887fcb5f153.png

Burnside引理

设G是集合X上的一个置换群(可以理解为合理的所有的置换方案的集合),S(g)为C中的不动点的着色集合,则可以证明等价类数目为所有S(g)的平均值。

一正方形分成4格,2着色,有多少种方案?其中,经过转动相同的图象算同一方案 对于每种格子我们都有两种选择,所以会有一下16种方案

adf96bf893b4b23092a326431bb94709.png

不动:所有的情况都是不动点 16

旋转90° (1)(2)是不动点 2

旋转180° (1)(2)(11)(12)是不动点 4

旋转270° (1)(2)是不动点 2 (16+2+4+2)/4=6种

Polya计数定理

先把所有方案重复计算相同的次数,再把结果除以重复的次数 设G是集合x上的一个置换群,X中每个元素可以被染成k种颜色,则不等价的着色数为:P=(1 / |G|) *∑K^(nc(g)),nc(g) 为置换中循环节的个数

这篇关于容斥原理公式c语言,【笔记】组合数学 - osc_3md1xrlp的个人空间 - OSCHINA - 中文开源技术交流社区...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/256901

相关文章

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

如何合理管控Java语言的异常

《如何合理管控Java语言的异常》:本文主要介绍如何合理管控Java语言的异常问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、Thorwable类3、Error4、Exception类4.1、检查异常4.2、运行时异常5、处理方式5.1. 捕获异常

C语言中的常见进制转换详解(从二进制到十六进制)

《C语言中的常见进制转换详解(从二进制到十六进制)》进制转换是计算机编程中的一个常见任务,特别是在处理低级别的数据操作时,C语言作为一门底层编程语言,在进制转换方面提供了灵活的操作方式,今天,我们将深... 目录1、进制基础2、C语言中的进制转换2.1 从十进制转换为其他进制十进制转二进制十进制转八进制十进

$在R语言中的作用示例小结

《$在R语言中的作用示例小结》在R语言中,$是一个非常重要的操作符,主要用于访问对象的成员或组件,它的用途非常广泛,不仅限于数据框(dataframe),还可以用于列表(list)、环境(enviro... 目录1. 访问数据框(data frame)中的列2. 访问列表(list)中的元素3. 访问jav

Java使用WebView实现桌面程序的技术指南

《Java使用WebView实现桌面程序的技术指南》在现代软件开发中,许多应用需要在桌面程序中嵌入Web页面,例如,你可能需要在Java桌面应用中嵌入一部分Web前端,或者加载一个HTML5界面以增强... 目录1、简述2、WebView 特点3、搭建 WebView 示例3.1 添加 JavaFX 依赖3

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

Spring框架中@Lazy延迟加载原理和使用详解

《Spring框架中@Lazy延迟加载原理和使用详解》:本文主要介绍Spring框架中@Lazy延迟加载原理和使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、@Lazy延迟加载原理1.延迟加载原理1.1 @Lazy三种配置方法1.2 @Component

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT