k8s pod根据指标自动扩缩容举例

2023-10-21 15:15

本文主要是介绍k8s pod根据指标自动扩缩容举例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

基于 内存 指标实现pod自动扩缩容 举例配置

基于 cpu 指标实现pod自动扩缩容 举例配置

基于请求数(次/秒) 指标实现pod自动扩缩容  举例配置

基于 http请求响应时间 (ms) 指标实现pod自动扩缩容  举例配置

基于 Java GC暂停时间 (ms) 指标实现pod自动扩缩容 举例配置

扩展点

prometheus对所有pod进行流量监控 配置举例



基于 内存 指标实现pod自动扩缩容 举例配置

首先,需要在Kubernetes集群中部署一个HPA(Horizontal Pod Autoscaler),它可以基于内存使用量自动调整Pod的数量。

以下是HPA的示例配置:

apiVersion: autoscaling/v2beta2  
kind: HorizontalPodAutoscaler  
metadata:  name: my-app-hpa  
spec:  scaleTargetRef:  apiVersion: apps/v1  kind: Deployment  name: my-app-deployment  minReplicas: 2  maxReplicas: 10  metrics:  - type: Resource  resource:  name: memory  targetAverageUtilization: 80 # 目标内存使用率(%)

上述配置中,HPA会根据内存使用量自动调整Pod的数量。

scaleTargetRef指定了要扩展的Pod对象(这里是一个Deployment)。

minReplicasmaxReplicas分别指定了Pod的最小和最大数量。

metrics指定了度量指标,这里使用的是内存使用量。

targetAverageUtilization设置了一个目标内存使用率,当内存使用率超过这个值时,HPA会自动扩展Pod的数量。

为了能够正确地监测内存使用量,需要为Pod配置相应的监控指标。这可以通过加入resources字段来实现,如下所示:

apiVersion: v1  
kind: Pod  
metadata:  name: my-app-pod  
spec:  containers:  - name: my-app-container  resources:  requests:  memory: "64Mi" # 请求64MB内存  limits:  memory: "128Mi" # 限制128MB内存  # ...其他配置...

在这个例子中,Pod中的容器会根据配置的内存限制来运行。

requests指定了Pod启动所需的最小内存,而limits则指定了Pod运行过程中所能够使用的最大内存。

这些配置可以帮助Kubernetes更好地管理资源,避免资源浪费和竞争。

基于 cpu 指标实现pod自动扩缩容 举例配置

下面是一个基于CPU使用率实现Kubernetes Pod自动扩展的示例配置。

首先,需要在Kubernetes集群中部署一个HPA(Horizontal Pod Autoscaler),它可以基于CPU使用率自动调整Pod的数量。

以下是HPA的示例配置:

apiVersion: autoscaling/v2beta2  
kind: HorizontalPodAutoscaler  
metadata:  name: my-app-hpa  
spec:  scaleTargetRef:  apiVersion: apps/v1  kind: Deployment  name: my-app-deployment  minReplicas: 2  maxReplicas: 10  metrics:  - type: Resource  resource:  name: cpu  targetAverageUtilization: 80 # 目标CPU使用率(%)

上述配置中,HPA会根据CPU使用率自动调整Pod的数量。

scaleTargetRef指定了要扩展的Pod对象(这里是一个Deployment)。

minReplicasmaxReplicas分别指定了Pod的最小和最大数量。

metrics指定了度量指标,这里使用的是CPU使用率。

targetAverageUtilization设置了一个目标CPU使用率,当CPU使用率超过这个值时,HPA会自动扩展Pod的数量。

需要注意的是,为了能够正确地监测CPU使用率,需要为Pod配置相应的监控指标。这可以通过在Pod中加入resources字段来实现,例如:

apiVersion: v1  
kind: Pod  
metadata:  name: my-app-pod  
spec:  containers:  - name: my-app-container  resources:  requests:  cpu: "100m" # 请求1个CPU核心100毫核(m核)  limits:  cpu: "200m" # 限制2个CPU核心200毫核(m核)  # ...其他配置...

在这个例子中,Pod中的容器会根据配置的CPU资源限制来运行。

requests指定了Pod启动所需的最小CPU资源,

limits则指定了Pod运行过程中所能够使用的最大CPU资源。

基于请求数(次/秒) 指标实现pod自动扩缩容  举例配置

下面是一个基于每秒请求数(Requests per second,RPS)实现Kubernetes Pod自动扩展的示例配置。

首先,需要使用一个HTTP代理或服务来监控每个Pod的RPS,比如一个Prometheus Operator。以下是一个Prometheus Operator的示例配置:

apiVersion: rbac.authorization.k8s.io/v1beta1  
kind: ClusterRoleBinding  
metadata:  name: prometheus-operator  
subjects:  
- kind: ServiceAccount  name: prometheus-operator  namespace: kube-system  
roleRef:  kind: ClusterRole  name: prometheus-operator

接下来,创建一个Prometheus ServiceMonitor资源以监视HTTP代理的RPS

apiVersion: monitoring.coreos.com/v1  
kind: ServiceMonitor  
metadata:  name: myapp-requests  
spec:  jobLabel: "myapp"  selector:  matchLabels:  myapp: my-app  relabelings:  - sourceLabels: [__meta_service_namespace, __meta_service_name]  targetLabel: source  action: keep  - sourceLabels: [__meta_kubernetes_pod_container_id]  targetLabel: container_id  action: keep  - sourceLabels: [__meta_kubernetes_pod_name]  targetLabel: pod_name  action: keep  - sourceLabels: [__meta_kubernetes_pod_label_myapp]  targetLabel: myapp  action: keep  metricsPath: /metrics  scheme: http  httpGet:  path: /metrics  port: 8000

在这个示例中,ServiceMonitor资源将根据Pod的标签选择器和HTTP Get请求监视my-app服务的RPS。请注意,您需要根据您的应用程序和环境进行自定义。

最后,创建一个HPA(Horizontal Pod Autoscaler)来根据RPS自动调整Pod的数量:

apiVersion: autoscaling/v2beta2  
kind: HorizontalPodAutoscaler  
metadata:  name: my-app-hpa  
spec:  scaleTargetRef:  apiVersion: apps/v1  kind: Deployment  name: my-app-deployment  minReplicas: 2  maxReplicas: 100  metrics:  - type: PodsMetricSource  podsMetricSource:  metricName: "requests_per_second" # 指定要监视的指标名称(例如:requests_per_second)  targetAverageValue: 10 # 目标RPS(例如:每秒10个请求)

在这个示例中,HPA将根据Pod的RPS自动调整Pod的数量。当RPS超过设定的目标值时,HPA将增加更多的Pod,以保持服务的高可用性和响应能力。

基于 http请求响应时间 (ms) 指标实现pod自动扩缩容  举例配置

首先,需要创建一个自定义度量源(Custom Metric Source),这里假设你的度量源是由Prometheus Operator提供的,可以按照以下步骤进行操作:

apiVersion: monitoring.coreos.com/v1  
kind: Prometheus  
metadata:  name: my-app-http-response-time  
spec:  http:  servicePort: 9090  metrics:  - name: http_response_time_seconds_count  help: Count of HTTP requests with response time greater than 1 second.  expression: sum(rate(http_request_duration_seconds_count{job="my-app"}[1m])) by (job)

上述配置中定义了一个Prometheus资源,用于收集HTTP请求的响应时间指标。http_request_duration_seconds_count是一个Prometheus指标,用于表示每秒HTTP请求的计数,通过rate()函数计算每分钟的平均请求速率,并使用sum()函数对所有job进行聚合。最终,通过by(job)对每个job进行分组,以便与Pod数量进行关联。

接下来,使用以下配置创建一个HPA对象:

apiVersion: autoscaling/v2beta2  
kind: HorizontalPodAutoscaler  
metadata:  name: my-app-hpa  
spec:  scaleTargetRef:  apiVersion: apps/v1  kind: Deployment  name: my-app-deployment  minReplicas: 2  maxReplicas: 10  metrics:  - type: PodsMetricSource  podsMetricSource:  metricName: http_response_time_seconds_count  targetAverageValue: 100 # 目标平均响应时间(秒)  thresholds:  - type: PodsMetricSource  podsMetricSource:  metricName: http_response_time_seconds_count  targetAverageValue: 5 # 每秒HTTP请求的目标计数(可根据需求调整)

上述配置中,HPA使用了PodsMetricSource类型的度量源,该度量源从Pod级别的度量指标中获取数据。

metricName设置为http_response_time_seconds_count,表示使用之前创建的自定义度量源来收集HTTP请求响应时间的指标数据。

targetAverageValue设置了一个目标响应时间的平均值,单位为秒。在此示例中,目标响应时间为5秒。

同时,为了更好地控制扩缩容的灵敏度,还添加了一个额外的阈值(threshold),该阈值使用相同的度量指标,但设置了每秒HTTP请求的目标计数。在此示例中,如果每秒HTTP请求的数量超过5,HPA将触发扩容操作。

请注意,上述示例仅为了演示如何基于HTTP请求响应时间实现Pod自动扩缩容,并提供了基本的配置示例。实际应用中,可能需要根据具体需求进行调整和优化。

基于 Java GC暂停时间 (ms) 指标实现pod自动扩缩容 举例配置

基于Java GC暂停时间实现自动扩缩容可以用来优化应用性能,避免由于GC暂停时间过长导致的应用延迟或卡顿。以下是一个基于GC暂停时间实现Pod自动扩缩容的示例配置,假设使用Kubernetes和Prometheus作为监控工具。

创建自定义度量源:

首先,需要从Prometheus中获取GC暂停时间的指标数据。可以使用以下配置创建一个自定义度量源,从Prometheus中获取GC暂停时间的指标数据:

apiVersion: monitoring.coreos.com/v1  
kind: Prometheus  
metadata:  name: my-app-gc-pause-time  
spec:  http:  servicePort: 9091  metrics:  - name: gc_pause_time_seconds_sum  help: Total GC pause time in seconds.  expression: sum(irate(gc_pause_time_seconds_sum[5m])) by (pod)

上述配置中,创建了一个Prometheus资源,用于收集GC暂停时间的指标数据。gc_pause_time_seconds_sum表示GC暂停时间的总和,使用irate()函数计算最近5分钟内每分钟的平均暂停时间,并使用sum()函数对所有Pod进行聚合。最终,通过by(pod)对每个Pod进行分组,以便与Pod数量进行关联。

接下来,使用以下配置创建一个HPA对象:

apiVersion: autoscaling/v2beta2  
kind: HorizontalPodAutoscaler  
metadata:  name: my-app-hpa  
spec:  scaleTargetRef:  apiVersion: apps/v1  kind: Deployment  name: my-app-deployment  minReplicas: 2  maxReplicas: 10  metrics:  - type: PodsMetricSource  podsMetricSource:  metricName: gc_pause_time_seconds_sum  targetAverageValue: 10 # 目标平均GC暂停时间(秒)  thresholds:  - type: PodsMetricSource  podsMetricSource:  metricName: gc_pause_time_seconds_sum  targetAverageValue: 2 # 每分钟GC暂停时间的目标计数(可根据需求调整)

上述配置中,HPA使用了PodsMetricSource类型的度量源,该度量源从Pod级别的度量指标中获取数据。

metricName设置为gc_pause_time_seconds_sum,表示使用之前创建的自定义度量源来收集GC暂停时间的指标数据。

targetAverageValue设置了一个目标GC暂停时间的平均值。在此示例中,目标GC暂停时间为2秒。

同时,为了更好地控制扩缩容的灵敏度,还添加了一个额外的阈值(threshold),该阈值使用相同的度量指标,但设置了每分钟GC暂停时间的目标计数。在此示例中,如果每分钟GC暂停时间超过2,HPA将触发扩容操作。

请注意,上述示例仅为了演示如何基于Java GC暂停时间实现Pod自动扩缩容,并提供了基本的配置示例。实际应用中,可能需要根据具体的应用场景、GC类型、监控工具等进行调整和优化。

扩展点

prometheus对所有pod进行流量监控 配置举例

Prometheus是一个开源的监控和告警工具,它可以用于监控各种系统和应用程序的性能。要使用Prometheus监控所有Pod的流量,您可以按照以下步骤进行设置:

  1. 安装和配置Prometheus:首先,您需要在您的Kubernetes集群中安装和配置Prometheus。这可以通过使用Kubernetes的Helm Chart或类似的工具来完成。您可以参考Prometheus的官方文档以获取更详细的安装和配置说明。

  2. 创建ServiceMonitor资源:在您的Kubernetes集群中,为每个要监控的Pod或服务创建一个ServiceMonitor资源。ServiceMonitor资源允许Prometheus监控指定服务的指标。以下是一个示例ServiceMonitor资源的配置:

apiVersion: monitoring.coreos.com/v1  
kind: ServiceMonitor  
metadata:  name: my-pod-service-monitor  
spec:  namespace: your-namespace # 指定要监控的Pod所属的命名空间  selector:  matchLabels:  app: your-pod-app-label # 指定要监控的Pod的标签  endpoints:  - basicAuth:  password:  name: your-pod-metrics-password # 指定metrics服务的密码  key: password  username: your-pod-metrics-username # 指定metrics服务的用户名  path: /metrics # 指定metrics服务的路径  port: your-pod-metrics-port # 指定metrics服务的端口

根据您的实际情况修改上述示例中的命名空间、标签、用户名、密码和端口等信息

3. 创建Prometheus目标:在Prometheus的配置文件(通常是prometheus.yml)中,创建一个新的目标,用于监控Pod的流量。以下是一个示例配置:

scrape_configs:  - job_name: 'pod-traffic'  kubernetes_sd_configs:  - role: pod  relabel_configs:  - source_labels: [__meta_kubernetes_pod_label_app]  target_label: pod_app_label  - source_labels: [__meta_kubernetes_pod_container_id]  target_label: pod_container_id  - source_labels: [__address__]  target_label: pod_address  regex: ([^:]+)(?::\d+)?  - source_labels: [__metrics_path__]  target_label: pod_metrics_path

上述配置中,我们指定了job_namepod-traffic,并配置了kubernetes_sd_configs以发现Pod。relabel_configs用于重标记指标的元数据,以便更方便地识别和组织指标数据。

4. 重新加载Prometheus配置:保存并关闭Prometheus的配置文件后,使用以下命令重新加载Prometheus配置:

curl -X POST http://<prometheus-address>:9090/-/reload

其中<prometheus-address>是Prometheus服务的主机名或IP地址。

5. 监视Pod流量:现在,Prometheus将会收集所有指定Pod的流量指标,并在其查询界面上显示它们。您可以使用Prometheus的查询语言(PromQL)来编写查询,以获取有关Pod流量的度量标准和趋势等信息。例如,以下查询可以获取所有Pod的总请求计数:

sum(rate(http_requests_total{job="pod-traffic"}[1m])) by (pod_app_label)

这篇关于k8s pod根据指标自动扩缩容举例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/255216

相关文章

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

SpringCloud使用Nacos 配置中心实现配置自动刷新功能使用

《SpringCloud使用Nacos配置中心实现配置自动刷新功能使用》SpringCloud项目中使用Nacos作为配置中心可以方便开发及运维人员随时查看配置信息,及配置共享,并且Nacos支持配... 目录前言一、Nacos中集中配置方式?二、使用步骤1.使用$Value 注解2.使用@Configur