High-frequency Component Helps Explain the Generalization of Convolutional Neural Networks CNN泛华论文解读

本文主要是介绍High-frequency Component Helps Explain the Generalization of Convolutional Neural Networks CNN泛华论文解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通常情况下,CNN表现特征和肉眼可理解的特征存在一定的出入,在CNN泛化能力上难以理解。本文以CMU 的汪浩瀚、邢波等人《High-frequency Component Helps Explain the Generalization of Convolutional Neural Network》中进行阐述。

参考  https://zhuanlan.zhihu.com/p/248068207?utm_source=wechat_session&utm_medium=social&utm_oi=843084519077736448&utm_campaign=shareopn

stage1:一个有趣的实验(探究网络从高频信号中能学习到什么东西)

预先在CIFAR10数据集上训练模型进行如下三组测试:①原始测试集;②高频信号抽取后重建测试集;③低频信号抽取后重建测试集;

分析:低频信号重建图和原始测试集在肉眼的角度审视,区别不大。而高频信号重建图(通常认为是高频噪声)肉眼几乎不可见。从人类的角度分类,低频信号重建图和原始图预测类别相似;然而,部分测试数据中的模型预测结果恰恰相反。作者分析,在一个有限的数据集中存在着高频信息与图片所表达语义的相互关联:在一个同分布的有限数据集中可能存在着一些无法察觉的高频信号刚好与图片的语义有些关联,进而导致了这些高频信号与数据集 label 的相互关联。当模型优化去降低损失函数时,模型可能会无差别地学习数据本身的信号或者这些高频信号,而这将使得对模型泛化能力的评估出现各种难以解释的现象。这样,尽管模型可能会达到较高的准确率,但它未必真的像人类一样理解数据。

stage2:探究对抗网络与高频信号的关系

论文中对比对抗网络卷积核和普通网络卷积核的区别,可以看到,对抗网络卷积核可视化结果更为平滑。从信号处理角度分析,平滑的卷积核可以抑制高频信号。但是,手动平滑卷积核,并不能大幅增加对抗网络的鲁棒性,结论:对抗鲁棒性较好的模型卷积核更加平滑,然而卷积核更加平滑的模型对抗鲁棒性未必更好。换言之:高频信息是对抗攻击的一部分,但并非全部。

stage3: 从高频信号解释 Batch Normalization 提升精度的原理

作者对测试集进行相同于stage1的操作,虚线是高频重建测试集的测试结果,实现是低频重建测试集结果。

可以看到,BN的使用可以大幅提升高频重建的准确率,学到了大量的高频信息:我们可以看到,BatchNorm 对应板块的虚线远远高于其他板块的虚线。这些结果说明 BatchNorm 之所以能够如此有效地提高模型的准确率,可能是在鼓励模型大量使用高频信息。正如前文所说的,在一个数据集里有各种信号,如果一个模型能利用更多的信号,那么它很有可能具备更高的准确率,这也符合我们所熟知的 BatchNorm 能够有效提高测试准确率的特点。

直观上来讲,我们猜测 BatchNorm 的优势来源于高频信息的像素值通常比较小(比如在图 1 中,高频重构的图片几乎只是一个黑色的方块)。而 BatchNorm 可能通过 normalization 提高了这个较小的值,使得模型更容易学到相关的信息。

 

这篇关于High-frequency Component Helps Explain the Generalization of Convolutional Neural Networks CNN泛华论文解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/254417

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

MySQL的ALTER TABLE命令的使用解读

《MySQL的ALTERTABLE命令的使用解读》:本文主要介绍MySQL的ALTERTABLE命令的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、查看所建表的编China编程码格式2、修改表的编码格式3、修改列队数据类型4、添加列5、修改列的位置5.1、把列