论文解读《Almost Unsupervised Learning for Dense Crowd Counting》AAAI2019

本文主要是介绍论文解读《Almost Unsupervised Learning for Dense Crowd Counting》AAAI2019,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Almost Unsupervised Learning for Dense Crowd Counting

Deepak Babu Sam, Neeraj N Sajjan, Himanshu Maurya, R. Venkatesh Babu

AAAI2019

摘要:

We present an unsupervised learning method for dense crowd count estimation.

we develop Grid Winner-Take-All (GWTA) autoencoder to learn several layers of useful filters from unlabeled crowd images. Our GWTA approach divides a convolution layer spatially into a grid of cells. Within each cell, only the maximally activated neuron is allowed to update the filter. Almost 99.9% of the parameters of the proposed model are trained without any labeled data while the rest 0.1% are tuned with supervision.

我们开发了Grid Winner-Take-All (GWTA)自动编码器,从未标记的人群图像中学习几个有用的过滤器层。我们的GWTA方法将卷积层在空间上划分为网格单元。在每个网格单元中,只有最大激活的神经元被允许更新过滤器。几乎99.9%的模型参数在没有任何标记数据的情况下进行了训练,而剩下的0.1%在监督下进行了调整。

 

引言:

贡献:

 A stacked convolutional autoencoder model based on grid winner-take-all (GWTA) paradigm for large-scale unsupervised feature learning.

一种基于网格赢者通吃(GWTA)范式的层叠卷积自编码器模型,用于大规模的无监督特征学习。

The first crowd counting system that can train almost 99.9% of its parameters without any annotated data.

第一个人群计数系统,可以训练几乎99.9%的参数,没有任何注释的数据。

 

方法:

                                          

GWTA sparsity is applied independently over each channel. Any given feature map is divided into a grid of rectangular cells of pre-defined size hw. During forward propagation of the input, only the “winner” neuron in the h w cell is allowed to pass the activation. The “winner” neuron is the one having the maximum value of activation in the cell and activations of all other neurons in the h w cell are set to zero. Now the task of the decoder is to reconstruct the encoder input from such a sparse activation map, which is extremely hard. Hence, the encoder cannot simply learn near identity filters and get minimum reconstruction cost, but are forced to acquire useful features recurring frequently in the input data.

GWTA独立的应用到每一个通道中。任一给定的特征图都可以划分成预先设置好的h×w尺寸的网格图。在输入的前向传播中,只有h×w网格中的“赢家”神经元允许通过激活单元。“赢家”神经元是网格内激活值最大的神经元,而h× w网格内所有其他神经元的激活值均为零。现在解码器的任务是根据这样一个稀疏的激活图重建编码器的输入,这是非常困难的。因此,编码器不能简单地学习靠近的滤波器层的特征并获得最小的重建损失,而是要获得在输入数据中频繁出现的有用特性。

无监督学习分四个阶段,每个阶段都用L2损失,SGD优化。训练直到损失指标在验证集上不再有提升为止。

第一阶段训练完后,得到的参数固定,然后训练第二阶段,以此类推。

最后需要有监督学习过滤掉人群计数中不需要的信息。这一阶段也使用L2损失函数和SGD优化器。

Most common method is to blur the head annotation with a Gaussian of fixed variance summing to one. In this work, we use a sigma of 8.0 for generating ground truth density maps.

最常见的方法是用固定方差和为1的高斯函数模糊head注释。在这项工作中,我们使用8.0的sigma来生成地面真值密度图。

实验结果:

这篇关于论文解读《Almost Unsupervised Learning for Dense Crowd Counting》AAAI2019的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253550

相关文章

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别