最优化方法——Matlab实现黄金分割法一维搜索

2023-10-21 08:30

本文主要是介绍最优化方法——Matlab实现黄金分割法一维搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 黄金分割法一维搜索原理
      • 算法流程:
    • Matlab代码
      • 命令行窗口结果打印:
        • 更换匿名函数:
      • 《最优化方法》教材上写成表的答案:
      • 黄金分割法的一些性质

黄金分割法一维搜索原理

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
若保留区间为[x1,b],我们得到的结果是一致的.
该方法称为黄金分割法,实际计算取近似值: x1=a+0.382(b – a), x2=a+0.618(b – a),
所以黄金分割法又称为0.618法.
黄金分割法每次缩小区间的比例是一致的,每次将区间长度缩小到原来的0.618倍.

算法流程:

在这里插入图片描述
黄金分割法也称作0.618法,一维指的是只含有一个未知量的情况。

Matlab代码

用matlab实现黄金分割法求解f(x)=x^2-x+2在(-1,3)上的最小值:

clc,clear,close all;
a = -1; b =3;
ep = 0.08*(b-a);
x = a:0.1:b;
f_x = x.^2-x+2;
plot(x, f_x, 'linewidth', 1.5)
axis([-1, 3, 0, 8])
title('f(x)=x^2-x+2')
grid on;
flag = 0;
cnt = 0;
pause(0.5)
while 1fprintf('第%d次迭代:\n', cnt)if flag==0x2 = a + 0.618*(b-a);f2 = x2.^2-x2+2;x1 = a + b - x2;f1 = x1.^2-x1+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)hold onstem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==1x1 = a + b - x2;f1 = x1.^2-x1+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==2x2 = a + 0.618*(b-a);f2 = x2.^2-x2+2;fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)endif abs(b-a)<epxb = (a+b)/2;disp('最优解为:')fprintf('xb = %f, f(xb) = %f\n', xb, xb.^2-xb+2)disp('黄金分割法一维搜索完毕.')breakelseif f1<f2disp('f1<f2')b = x2;x2 = x1;f2 = f1;flag = 1;elseif f1==f2disp('f1=f2')a = x1;b = x2;flag = 0;elseif f1>f2disp('f1>f2')a = x1;x1 = x2;f1 = f2;flag = 2;endcnt = cnt + 1;
end
pause(0.5)
stem(xb, xb^2-xb+2, 'r', 'linewidth', 2)

代码运行有动态效果,这里就不再保存为GIF动图了,可以复制一键运行尝试:
在这里插入图片描述

命令行窗口结果打印:

0次迭代:
a = -1.000000, b = 3.000000
x1 = 0.528000, x2 = 1.472000, f1 = 1.750784, f2 = 2.694784
f1<f2
第1次迭代:
a = -1.000000, b = 1.472000
x1 = -0.056000, x2 = 0.528000, f1 = 2.059136, f2 = 1.750784
f1>f2
第2次迭代:
a = -0.056000, b = 1.472000
x1 = 0.528000, x2 = 0.888304, f1 = 1.750784, f2 = 1.900780
f1<f2
第3次迭代:
a = -0.056000, b = 0.888304
x1 = 0.304304, x2 = 0.528000, f1 = 1.788297, f2 = 1.750784
f1>f2
第4次迭代:
a = 0.304304, b = 0.888304
x1 = 0.528000, x2 = 0.665216, f1 = 1.750784, f2 = 1.777296
f1<f2
第5次迭代:
a = 0.304304, b = 0.665216
x1 = 0.441520, x2 = 0.528000, f1 = 1.753420, f2 = 1.750784
f1>f2
第6次迭代:
a = 0.441520, b = 0.665216
x1 = 0.528000, x2 = 0.579764, f1 = 1.750784, f2 = 1.756362
最优解为:
xb = 0.553368, f(xb) = 1.752848
黄金分割法一维搜索完毕.
>> 
更换匿名函数:

通过更改目标函数 f_x ,对自定义的目标函数进行一维搜索的代码:

clc,clear,close all;
a = -1; b =3;
ep = 0.08*(b-a);
x = a:0.1:b;
f_x = @(x)x.^2-3*x+2;
plot(x, f_x(x), 'linewidth', 1.5)
axis tight
tl = func2str(f_x);
title(tl(5:end))
grid on;
flag = 0;
cnt = 0;
pause(0.5)
while 1fprintf('第%d次迭代:\n', cnt)if flag==0x2 = a + 0.618*(b-a);f2 = f_x(x2);x1 = a + b - x2;f1 = f_x(x1);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)hold onstem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==1x1 = a + b - x2;f1 = f_x(x1);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)elseif flag==2x2 = a + 0.618*(b-a);f2 = f_x(x2);fprintf('a = %f, b = %f\n', a, b)fprintf('x1 = %f, x2 = %f, f1 = %f, f2 = %f\n', x1, x2, f1, f2)stem([x2, x1], [f2, f1], '--', 'linewidth', 0.8)pause(1)endif abs(b-a)<epxb = (a+b)/2;disp('最优解为:')fprintf('xb = %f, f(xb) = %f\n', xb, f_x(xb))disp('黄金分割法一维搜索完毕.')breakelseif f1<f2disp('f1<f2')b = x2;x2 = x1;f2 = f1;flag = 1;elseif f1==f2disp('f1=f2')a = x1;b = x2;flag = 0;elseif f1>f2disp('f1>f2')a = x1;x1 = x2;f1 = f2;flag = 2;endcnt = cnt + 1;
end
pause(0.5)
stem(xb, f_x(xb), 'r', 'linewidth', 2)

如果不想等待动画加载,ctrl+f, ctrl+r 把pause批量注释即可;
在这里插入图片描述

《最优化方法》教材上写成表的答案:

在这里插入图片描述

黄金分割法的一些性质

1、x1 = a+b-x2;
2、下一次迭代的区间长度是上一个区间长度的0.618倍;
3、如果f1<f2,则上一次迭代的x1, f1传给下一次迭代的x2, f2,
同理如果f1>f2,则上一次迭代的x2, f2传给下一次迭代的x1, f1;
4、迭代次数和求解精度取决于终止条件 ∣ b − a ∣ < ϵ |b-a|< \epsilon ba<ϵ ϵ \epsilon ϵ的大小。

这篇关于最优化方法——Matlab实现黄金分割法一维搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253167

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法