【FNN预测】基于蝙蝠优化的模糊神经网络FNN研究附Matlab代码

2023-10-21 07:59

本文主要是介绍【FNN预测】基于蝙蝠优化的模糊神经网络FNN研究附Matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

耙吸挖泥船的耙头产量主要取决于耙头的吸入密度,准确的吸入密度预测对提高耙吸挖泥船疏浚产量具有重要的意义.针对目前对吸入密度预测方法存在精度低,实时效果性差的缺点,提出了一种蝙蝠算法与模糊神经网络相结合的预测方法.通过实测施工数据,构建BA-FNN预测模型.实验表明:BA-FNN预测精度高且稳定性能好,能够为耙头产量预测以及指导施工提供科学有效的参考依据.

⛄ 部分代码

% ======================================================== % 

% Files of the Matlab programs included in the book:       %

% Xin-She Yang, Nature-Inspired Metaheuristic Algorithms,  %

% Second Edition, Luniver Press, (2010).   www.luniver.com %

% ======================================================== %    

% -------------------------------------------------------- %

% Bat-inspired algorithm for continuous optimization (demo)%

% Programmed by Xin-She Yang @Cambridge University 2010    %

% -------------------------------------------------------- %

% Usage: bat_algorithm([20 1000 0.5 0.5]);                 %

% -------------------------------------------------------------------

% This is a simple demo version only implemented the basic          %

% idea of the bat algorithm without fine-tuning(微调)the parameters,     % 

% Then, though this demo works very well, it is expected that       %

% this demo is much less efficient than the work reported in        % 

% the following papers:                                             %

% (Citation details):                                               %

% 1) Yang X.-S., A new metaheuristic bat-inspired algorithm,        %

%    in: Nature Inspired Cooperative Strategies for Optimization    %

%    (NISCO 2010) (Eds. J. R. Gonzalez et al.), Studies in          %

%    Computational Intelligence, Springer, vol. 284, 65-74 (2010).  %

% 2) Yang X.-S., Nature-Inspired Metaheuristic Algorithms,          %

%    Second Edition, Luniver Presss, Frome, UK. (2010).             %

% 3) Yang X.-S. and Gandomi A. H., Bat algorithm: A novel           %

%    approach for global engineering optimization,                  %

%    Engineering Computations, Vol. 29, No. 5, pp. 464-483 (2012).  %

% -------------------------------------------------------------------

% Main programs starts here

function [best,fmin,N_iter]=bat_algorithm(para)

% Display help

 help bat_algorithm.m

% Default parameters 默认参数

if nargin<1,  para=[20 1000 0.5 0.5];  end

n=para(1);      % Population size, typically10 to 40

N_gen=para(2);  % Number of generations

A=para(3);      % Loudness  (constant or decreasing)

r=para(4);      % Pulse rate (constant or decreasing)

% This frequency range determines the scalings

% You should change these values if necessary

Qmin=0;         % Frequency minimum

Qmax=2;         % Frequency maximum

% Iteration parameters

N_iter=0;       % Total number of function evaluations  %这是什么意思???

% Dimension of the search variables

d=10;           % Number of dimensions 

% Lower limit/bounds/ a vector

Lb=-2*ones(1,d);

% Upper limit/bounds/ a vector

Ub=2*ones(1,d);   

% Initializing arrays

Q=zeros(n,1);   % Frequency

v=zeros(n,d);   % Velocities

% Initialize the population/solutions

for i=1:n,

  Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);

  Fitness(i)=Fun(Sol(i,:));

end

% Find the initial best solution

[fmin,I]=min(Fitness);   %返回多个参数的时候用[ ],fmin接受第一个参数,I接受第二个参数

%这里fmin是最小值,I是最小值的索引,也就是第几个

best=Sol(I,:);

% ======================================================  %

% Note: As this is a demo, here we did not implement the  %

% reduction of loudness and increase of emission rates.   %

% Interested readers can do some parametric studies       %

% and also implementation various changes of A and r etc  %

% ======================================================  %

% Start the iterations -- Bat Algorithm (essential part)  %

for t=1:N_gen, 

% Loop over all bats/solutions

        for i=1:n,

          Q(i)=Qmin+(Qmin-Qmax)*rand;%其中rand产生一个0到1的随机数

          v(i,:)=v(i,:)+(Sol(i,:)-best)*Q(i);

          S(i,:)=Sol(i,:)+v(i,:);

          % Apply simple bounds/limits

          Sol(i,:)=simplebounds(Sol(i,:),Lb,Ub);

          % Pulse rate

          if rand>r

          % The factor 0.001 limits the step sizes of random walks 

              S(i,:)=best+0.001*randn(1,d);

          end

     % Evaluate new solutions

           Fnew=Fun(S(i,:));

     % Update if the solution improves, or not too loud

           if (Fnew<=Fitness(i)) & (rand<A) ,

                Sol(i,:)=S(i,:);

                Fitness(i)=Fnew;

           end

          % Update the current best solution

          if Fnew<=fmin,

                best=S(i,:);

                fmin=Fnew;

          end

        end

        N_iter=N_iter+n;

         

end

% Output/display

disp(['Number of evaluations: ',num2str(N_iter)]);

disp(['Best =',num2str(best),' fmin=',num2str(fmin)]);

% Application of simple limits/bounds

function s=simplebounds(s,Lb,Ub)

  % Apply the lower bound vector

  ns_tmp=s;

  I=ns_tmp<Lb;

  ns_tmp(I)=Lb(I);

  

  % Apply the upper bound vector 

  J=ns_tmp>Ub;

  ns_tmp(J)=Ub(J);

  % Update this new move 

  s=ns_tmp;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Objective function: your own objective function can be written here

% Note: When you use your own function, please remember to 

%       change limits/bounds Lb and Ub (see lines 52 to 55) 

%       and the number of dimension d (see line 51). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z=Fun(u)

% Sphere function with fmin=0 at (0,0,...,0)

z=sum(u.^2);

%%%%% ============ end ====================================

⛄ 运行结果

⛄ 参考文献

[1]张容, 阎红, 杜丽萍. 基于模糊神经网络(FNN)的赤潮预警预测研究[J]. 海洋通报:英文版, 2006, 25(001):83-91.

[2]赵建强, 陈必科, 葛考, et al. 基于FOA—FNN算法的边坡稳定性评价研究[C]// 中国系统工程学会第十八届学术年会. 2014.

[3]郝光杰, 俞孟蕻, and 苏贞. "基于蝙蝠算法优化模糊神经网络的耙吸挖泥船耙头吸入密度研究." 计算机与数字工程 002(2022):050.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

这篇关于【FNN预测】基于蝙蝠优化的模糊神经网络FNN研究附Matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/253022

相关文章

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.