概率统计Python计算:单个正态总体均值单侧假设的T检验

本文主要是介绍概率统计Python计算:单个正态总体均值单侧假设的T检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
正态总体的方差 σ 2 \sigma^2 σ2未知的情况下,对总体均值 μ ≤ μ 0 \mu\leq\mu_0 μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0)进行显著水平 α \alpha α下的假设检验,检验统计量 X ‾ − μ 0 S / n \frac{\overline{X}-\mu_0}{S/\sqrt{n}} S/n Xμ0~ t ( n − 1 ) t(n-1) t(n1)。其中 X ‾ \overline{X} X S S S分别为样本均值和样本标准差。用p值法的计算函数定义如下。

from scipy.stats import t	#导入t
def ttestR(T, df, alpha):	#右侧检验函数p=t.sf(T, df)return p>=alpha
def ttestL(T, df, alpha):	#左侧检验函数p=t.cdf(T, df)return p>=alpha

程序的第2~4行定义T方法右侧检验函数ttestR,第5~7行定义左侧检验函数ttestL。两个函数函数的参数T、df和alpha分别表示检测统计量观测值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0 t t t分布的自由度 n − 1 n-1 n1和显著水平 α \alpha α。对于右侧检验函数ttestR,第3行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的残存函数在统计量值T处的函数值。而对于左侧检验函数ttestL,第6行计算p值为 t ( n − 1 ) t(n-1) t(n1)分布的累积分布函数在统计量值T处的函数值。返回的布尔值p>=alpha为True,则接受假设 H 0 : μ ≤ μ 0 H_0:\mu\leq\mu_0 H0:μμ0(或 μ ≥ μ 0 \mu\geq\mu_0 μμ0),否则拒绝 H 0 H_0 H0
例1 某种元件的寿命 X X X(以h计)服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。现测得16只元件的寿命如下:
159 , 280 , 101 , 212 , 224 , 379 , 179 , 264 , 222 , 362 , 168 , 250 , 149 , 260 , 485 , 170 159, 280, 101, 212, 224, 379, 179, 264,222, 362, 168, 250, 149, 260, 485, 170 159,280,101,212,224,379,179,264,222,362,168,250,149,260,485,170
问是否有理由认为元件的寿命大于225h?
解: 按题意需对假设
H 0 : μ ≥ 225 , H 1 : μ < 225. H_0:\mu\geq225, H_1:\mu<225. H0:μ225,H1:μ<225.
作左侧检验,下列代码完成本例计算。

import numpy as np                                  #导入numpy
x=np.array([159, 280, 101, 212, 224, 379, 179, 264, #样本数据222, 362, 168, 250, 149, 260, 485, 170])
xmean=x.mean()                                      #样本均值
s=x.std(ddof=1)                                     #样本均方差
n=x.size                                            #样本容量
mu0=225                                             #总体均值假设值
alpha=0.05                                          #显著水平
T=(xmean-mu0)/(s/np.sqrt(n))						#检验统计量值
accept=ttestL(T, n-1, alpha)          				#计算左侧检验
print('mu>=%d is %s.'%(mu0, accept))

第2~8行根据题面设置已知数据,第9行计算检验统计量值 x ‾ − μ 0 s / n \frac{\overline{x}-\mu_0}{s/\sqrt{n}} s/n xμ0为T,第10行调用ttestL函数完成左侧检验。运行程序,输出

mu>=225 is True.

表示接受假设 H 0 : μ ≥ μ 0 = 225 H_0:\mu\geq\mu_0=225 H0:μμ0=225,即有理由认为元件的寿命大于225h。
例2 下面列出的是某工厂随机选取的20只部件的装配时间(min):
9.8 , 10.4 , 10.6 , 9.6 , 9.7 , 9.9 , 10.9 , 11.1 , 9.6 , 10.2 , 10.3 , 9.6 , 9.9 , 11.2 , 10.6 , 9.8 , 10.5 , 10.1 , 10.5 , 9.7 9.8, 10.4, 10.6, 9.6, 9.7, 9.9, 10.9, 11.1, 9.6, 10.2, \\10.3, 9.6, 9.9, 11.2, 10.6, 9.8, 10.5, 10.1, 10.5, 9.7 9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7
设装配时间的总体服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2均未知。是否可以认为装配时间的均值 μ \mu μ大于10(取 α = 0.05 \alpha=0.05 α=0.05)?
解: 按题意需对假设 H 0 : μ > 10 H_0:\mu>10 H0:μ>10作左侧检验。下列代码完成本例计算。

import numpy as np						#导入numpy
x=np.array([9.8, 10.4, 10.6, 9.6, 9.7,	#样本数据9.9, 10.9, 11.1, 9.6, 10.2,10.3, 9.6, 9.9, 11.2, 10.6,9.8, 10.5, 10.1, 10.5, 9.7])
xmean=x.mean()							#样本均值
s=x.std(ddof=1)							#样本均方差
n=x.size								#样本容量
mu0=10									#假设总体均值
alpha=0.05								#显著水平
T=(xmean-mu0)/(s/np.sqrt(n))			#检测统计量值
accept=ttestL(T, n-1, alpha)			#计算检验
print('mu>=%d is %s.'%(mu0, accept))

运行程序,输出

mu>=10 is True.

表示接受假设 H 0 H_0 H0,即装配时间的均值大于10。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
返回《导引》

这篇关于概率统计Python计算:单个正态总体均值单侧假设的T检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251735

相关文章

Python多重继承慎用的地方

《Python多重继承慎用的地方》多重继承也可能导致一些问题,本文主要介绍了Python多重继承慎用的地方,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录前言多重继承要慎用Mixin模式最后前言在python中,多重继承是一种强大的功能,它允许一个

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-