如何使用迭代最近点(How to use iterative closest point)

2023-10-20 19:39

本文主要是介绍如何使用迭代最近点(How to use iterative closest point),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#如何使用迭代最近点
本文档演示如何在代码中使用迭代最接近点算法,通过最小化两个点云之间的距离并严格转换它们,可以确定一个PointCloud是否只是另一个PointCloud的刚性转换。

#代码

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>int
main (int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);// Fill in the CloudIn datacloud_in->width    = 5;cloud_in->height  = 1;cloud_in->is_dense = false;cloud_in->points.resize (cloud_in->width * cloud_in->height);for (size_t i = 0; i < cloud_in->points.size (); ++i){cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);}std::cout << "Saved " << cloud_in->points.size () << " data points to input:"<< std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << "    " <<cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<cloud_in->points[i].z << std::endl;*cloud_out = *cloud_in;std::cout << "size:" << cloud_out->points.size() << std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i)cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;std::cout << "Transformed " << cloud_in->points.size () << " data points:"<< std::endl;for (size_t i = 0; i < cloud_out->points.size (); ++i)std::cout << "    " << cloud_out->points[i].x << " " <<cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;icp.setInputCloud(cloud_in);icp.setInputTarget(cloud_out);pcl::PointCloud<pcl::PointXYZ> Final;icp.align(Final);std::cout << "has converged:" << icp.hasConverged() << " score: " <<icp.getFitnessScore() << std::endl;std::cout << icp.getFinalTransformation() << std::endl;return (0);
}

#说明
现在,让我们逐个分解这个代码。

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>

这些头文件包含我们将使用的所有类的定义。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);

创建两个pcl::PointCloud<pcl::PointXYZ> boost shared pointers并初始化它们。每个点的类型在pcl命名空间中设置为PointXYZ,即:

// \brief A point structure representing Euclidean xyz coordinates.
struct PointXYZ
{float x;float y;float z;
};

The lines:

  // Fill in the CloudIn datacloud_in->width    = 5;cloud_in->height  = 1;cloud_in->is_dense = false;cloud_in->points.resize (cloud_in->width * cloud_in->height);for (size_t i = 0; i < cloud_in->points.size (); ++i){cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);}std::cout << "Saved " << cloud_in->points.size () << " data points to input:"<< std::endl;for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << "    " <<cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<cloud_in->points[i].z << std::endl;*cloud_out = *cloud_in;std::cout << "size:" << cloud_out->points.size() << std::endl;

用随机点值填充PointCloud结构,并设置合适的参数(宽度,高度,is_dense)。此外,他们输出保存的点数,以及它们的实际数据值。

然后:

  for (size_t i = 0; i < cloud_in->points.size (); ++i)cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;std::cout << "Transformed " << cloud_in->points.size () << " data points:"<< std::endl;for (size_t i = 0; i < cloud_out->points.size (); ++i)std::cout << "    " << cloud_out->points[i].x << " " <<cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;

对点云执行简单的刚性变换并再次输出数据值。

  pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;icp.setInputCloud(cloud_in);icp.setInputTarget(cloud_out);

这将创建一个IterativeClosestPoint的实例并为其提供一些有用的信息。“icp.setInputCloud(cloud_in);”将cloud_in设置为PointCloud开始,“icp.setInputTarget(cloud_out);which we want cloud_in to look like.

接下来,

  pcl::PointCloud<pcl::PointXYZ> Final;icp.align(Final);std::cout << "has converged:" << icp.hasConverged() << " score: " <<icp.getFitnessScore() << std::endl;std::cout << icp.getFinalTransformation() << std::endl;

创建一个pcl::PointCloud<pcl::PointXYZ>,IterativeClosestPoint可以在应用该算法后将其保存到生成的云中。如果两个PointCloud正确对齐(意味着它们都是同一个云,而且只是某种刚性转换应用于其中一个云),则icp.hasConverged() = 1 (true)。It then outputs the fitness score of the final transformation and some information about it.

#编译和运行程序
将以下行添加到您的CMakeLists.txt文件中:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(iterative_closest_point)find_package(PCL 1.2 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (iterative_closest_point iterative_closest_point.cpp)
target_link_libraries (iterative_closest_point ${PCL_LIBRARIES})

After you have made the executable, you can run it. Simply do:

./iterative_closest_point

You will see something similar to:

Saved 5 data points to input:
0.352222 -0.151883 -0.106395
-0.397406 -0.473106 0.292602
-0.731898 0.667105 0.441304
-0.734766 0.854581 -0.0361733
-0.4607 -0.277468 -0.916762
size:5
Transformed 5 data points:
1.05222 -0.151883 -0.106395
0.302594 -0.473106 0.292602
-0.0318983 0.667105 0.441304
-0.0347655 0.854581 -0.03617330.2393 -0.277468 -0.916762
[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample
selection distance threshold of: 0.200928
[pcl::IterativeClosestPoint::computeTransformation] Number of
correspondences 4 [80.000000%] out of 5 points [100.0%], RANSAC rejected:
1 [20.000000%].
[pcl::IterativeClosestPoint::computeTransformation] Convergence reached.
Number of iterations: 1 out of 0. Transformation difference: 0.700001
has converged:1 score: 1.95122e-141  4.47035e-08 -3.25963e-09          0.7
2.98023e-08            1 -1.08499e-07 -2.98023e-08
1.30385e-08 -1.67638e-08            1  1.86265e-080            0            0            1

How to use iterative closest point

这篇关于如何使用迭代最近点(How to use iterative closest point)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249293

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca