【分布式】入门级NCCL多机并行实践 - 02

2023-10-20 19:29

本文主要是介绍【分布式】入门级NCCL多机并行实践 - 02,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 背景知识

大模型和分布式训练对数据的吞吐量以及并行度都有很高的要求,NCCL就是在这个背景下诞生的。

如果你是一个只会写写Python,调用PyTorch和Horovod的算法萌新,可能对于分布式底层的东西不太了解,在下岗热潮中被主管逼着转变成算子或者通讯库的搬砖工,就会像我一样两眼蒙蔽。因此本文只对自己踩到的坑做一个整理,如果有说错的地方,那就是我说错了。

1. 从PyTorch开始理解结构

以PyTorch为例,其中spmd接口下的相关定义是用于处理分布式的。但主要是处理单机多CPU情况,因此我们今天只考虑多机(多节点)情况。

SPMD(Single Program/Multiple Data),即单程序多份数据进行任务并行。SPMD的本质是对问题进行域分解,它将一个大的问题区域分解成若干个较小的问题区域,然后对其并行求解。

其中用于实现多节点分布式的组件有以下三个:

  • Distributed Data-Parallel Training (DDP)
  • RPC-Based Distributed Training (RPC)
  • Collective Communication (c10d)

分布式结构

从上图可知,1.6版本左右的PyTorch调用结构如下,最后在ProcessGroup.hpp可以找到对NCCL、Gloo和MPI的调用。

而这些蓝色的部分就是基本的分布式通讯库,他们负责实现通讯和一部分计算功能。

2. 通讯方式

已知显卡与主板通过PCIE相连,任何数据都要从PCIE和CPU穿过,这么做的效率肯定是很低的。

因此在GPUDirect技术出现以后,我们可以把GPU通信分为GPU控制的GPU通信和CPU控制的GPU通信两种。感兴趣相关的细节可以通过此文查看:【研究综述】浅谈GPU通信和PCIe P2P DMA 

我们知道通信技术有很多,例如DMA,P2P。DMA和P2P都是一种能力,而非具体的协议。

2.1 DMA & P2P

DMA(Direct Memory Access,直接内存访问),允许在计算机主板上的设备直接把数据发送到内存中去,数据搬运不需要CPU的参与。

传统内存访问需要通过CPU进行数据copy来移动数据,通过CPU将内存中的Buffer1移动到Buffer2中。DMA模式:可以同DMA Engine之间通过硬件将数据从Buffer1移动到Buffer2,而不需要操作系统CPU的参与,大大降低了CPU Copy的开销。

通常,我们也将主机称为节点。

第二代GPUDirect技术被称作GPUDirect P2P(Peer to Peer),重点解决的是节点内GPU通信问题。两个GPU可以通过PCIe P2P直接进行数据搬移,避免了主机内存和CPU的参与。

那么一台机器中的数据搬运是DMA,多台主机的DMA如何实现呢?这就出现了RDMA这一协议。

2.2 RDMA

RDMA( Remote Direct Memory Access )意为远程直接地址访问,通过RDMA,本端节点可以“直接”访问远端节点的内存。所谓直接,指的是可以像访问本地内存一样,绕过传统以太网复杂的TCP/IP网络协议栈读写远端内存,而这个过程对端是不感知的,而且这个读写过程的大部分工作是由硬件而不是软件完成的。

利用机器本身的DMA能力,以及网卡等其他硬件实现的远程DMA。这就和RPC远程过程调用有类似之处。

 RDMA是一种host-offload, host-bypass技术,允许应用程序(包括存储)在它们的内存空间之间直接做数据传输。具有RDMA引擎的以太网卡(RNIC)--而不是host--负责管理源和目标之间的可靠连接。

为了支持RDMA实现,有以下三种网络协议:

InfiniBand(IB)从一开始就支持RDMA的新一代网络协议。由于这是一种新的网络技术,因此需要支持该技术的网卡和交换机。
RDMA过融合以太网(RoCE)即RDMA over Ethernet, 允许通过以太网执行RDMA的网络协议。这允许在标准以太网基础架构(交换机)上使用RDMA,只不过网卡必须是支持RoCE的特殊的NIC。
互联网广域RDMA协议(iWARP)即RDMA over TCP, 允许通过TCP执行RDMA的网络协议。这允许在标准以太网基础架构(交换机)上使用RDMA,只不过网卡要求是支持iWARP(如果使用CPU offload的话)的NIC。否则,所有iWARP栈都可以在软件中实现,但是失去了大部分的RDMA性能优势。

IB是最简单的方式,其次是RoCE,当然本文不做赘述,有大篇讲的好的博客,甚至直接看论文和文档也是可以的。NCCL已经支持这些协议。 

2.3 MPI

MPI有多种实现方式,例如OpenMPI,MPICH。

MPI 全名叫 Message Passing Interface,即信息传递接口,作用是可以通过 MPI 可以在不同进程间传递消息,从而可以并行地处理任务,即进行并行计算。NCCL中利用MPI来处理多机通讯的部分。

直接下载:

#apt安装mpi
sudo apt-get update
sudo apt install openmpi-bin openmpi-doc libopenmpi-dev
#验证是否安装成功
mpirun --version

自己编译可参考前文:分布式学习 - MPICH编译与实践_mpich 编译指定 mpich cc_canmoumou的博客-CSDN博客

3. NCCL

NCCL在单机多卡环境下的编译与运行参考我的前文:【分布式】NCCL部署与测试 - 01_canmoumou的博客-CSDN博客

 NCCL本身具备了基本的通信协议支持、环路算法、原语操作等等。

由于数据运输和计算都是在GPU上完成,需要launch kernel,因此阅读源码前要具备基本的CUDA知识。

3.1 NCCL 多机多卡实践

 环境配置

1. 两台多卡服务器,需要配置好无密钥登陆(ssh),以及NFS共享目录。NFS挂载方式如果我有空另外再写。

2. 检查IB设备及性能,确定有一块或多块IB网卡,安装nv_peer_mem驱动

3. 配置BIOS:配置IOMMU等

如何检查:

# check system physical memory size
sudo dmidecode -t memory | grep Size: | grep -v "No Module Installed" | awk '{sum+=$2}END{print sum}'sudo cat /var/log/dmesg | grep -e "AMD-Vi: Interrupt remapping enabled" -e "IOMMU enabled"

若发现IOMMU被disabled,请到BIOS界面更改:

选择enable Intel VT for Directed I/O (VT-d)选项

或者enable IOMMU选项

4. 打开CPU高性能模式,并配置网络

查看IB网络是否正常

ibstat

CA 'mlx5_0'

        CA type: MT4123

        Number of ports: 1

        Firmware version: 20.31.1014

        Hardware version: 0

        Node GUID: 0xb83fd203005682a2

        System image GUID: 0xb83fd203005682a2

        Port 1:

                State: Active

                Physical state: LinkUp

                Rate: 200

                Base lid: 12

                LMC: 0

                SM lid: 5

                Capability mask: 0x2651e848

                Port GUID: 0xb83fd203005682a2

                Link layer: InfiniBand

5. 下载其他依赖,下载NCCL源码并保证单机单卡可以运行,下载mpich。

 编译运行

我们通过NCCL-TEST运行程序,其中NCCL原仓库代码不需要重新编译,只有NCCL-TEST需要重新编译,必须增添MPI_HOME,并设置MPI=1 

# 单机编译nccl-test:
make CUDA_HOME=/path/to/cuda NCCL_HOME=/path/to/nccl# 多机编译
make CUDA_HOME=/path/to/cuda NCCL_HOME=/path/to/nccl MPI_HOME=/path/to/mpi MPI=1 

将编译好的build文件放到NFS目录下,这样两台机器都可以在共享目录看到此文件。

再在共享目录外设置算法拓扑(topo.txt)和图结构(graph.txt),并添加mpi_hosts文件。mpi_hosts文件内放两张机器的ip地址:

# MPI CLUSTERS
X.X.X.X manager slots=1
X.X.X.X worker1 slots=1

运行:

mpirun -hostfile mpi_hosts \

       -np 2 \

       --allow-run-as-root \

       -x LD_LIBRARY_PATH=<CUDA_LIB>:<NCCL_HOME>/lib \

       -x NCCL_IB_HCA=<IB net name>:1 \

       -x NCCL_DEBUG=TRACE \

       -x NCCL_PROTOS=2 \

       -x NCCL_TOPO_DUMP_FILE=./topo.txt \

       -x NCCL_GRAPH_DUMP_FILE=./graph.txt \

       <nfs_share_path>/mccl-tests/all_reduce_perf -b 1M -e 128M -f 2 -g 1 -t 1

请注意,-np的值为mpi_hosts内各个slots之和。

使用mpich运行的时候,以单机的方式运行,也就是单机四卡是-g 4,多机四卡的参数也是-g 4.

 # 总结

这篇关于【分布式】入门级NCCL多机并行实践 - 02的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249256

相关文章

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio