【组会整理及心得】BiFormer、SICNet、IceNet

2023-10-20 18:59

本文主要是介绍【组会整理及心得】BiFormer、SICNet、IceNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【CVPR2023】BiFormer: Vision Transformer with Bi-Level Routing Attention

BiFormer:Vision Transformer with Bi-Level Routing Attention - 知乎

【本文贡献】

  1. 通过双层路由(bi-level routing)提出了一种新颖的动态稀疏注意力(dynamic sparse attention),以实现更灵活的计算分配和内容感知,使其具备动态的、query感知的稀疏性
  2. 使用两级路由注意力作为基本构建块,提出了一个新的视觉Transformer,名为BiFormer,视觉领域的多个实验表明该模型具有更好的性能。

【网络结构】

先是提出了Bi-Level Routing Attention (BRA),先将特征图划分为S×S个非重叠区域,得到QKV,再求Q和K的均值来得到对应的Qr和Kr,再使用转置乘法得到区域间的亲和度的邻接矩阵Ar,使用topK算子保留关系最密切的前k个区域,得到区域路由索引矩阵Ir。

得到Ir后即可应用细粒度的Token-to-token attention,如下图所示,先汇集以Ir中的所有元素为索引的路由区域,并收集它们的所有K和V得到Kg和Vg,再将Kg和Vg应用于注意力。

 

 最后,有

 这里的LCE是一个局部上下文增强项(相关论文《Shunted Self-Attention via Multi-Scale Token Aggregation》)。

使用 BRA 作为基本构建块,本文提出了BiFormer,如下图所示,大致结构为四阶段金字塔结构。

【心得体会】

采用动态稀疏注意力和topK方式有利于减少运算量,但也有使得准确率变低的风险,或许要注意一下K值的选取。

【TGRS2022】A data-driven deep learning model for weekly sea ice concentration prediction of the Pan-Arctic during the melting season

1. SICNet [Yibin Ren, Xiaofeng LI, Wenhao Zhang] - 知乎

【本文贡献】

提出了一个用于海冰预测的模型SICNet,它比现有的模型更轻量,并且性能好,显示了出比异常持久性 (Persist) 更好的递归预测性能。

【网络结构】

总体上是一个U-Net结构,主要创新点是提出了TSAM,它是将CBAM的MLP部分替换为本文提出的TCN模块形成的,相当于给特征图添加了权重信息。

TSAM相关模块的结构以及与CBAM的对比:

本文认为直接将 CBAM 搬到本文SIC长序列中不太合适, 因为计算机视觉中通常用不同 channel 表示不同类, MLP是用于提取类之间的全局关联性的, 而在 SIC 的长序列中, 更需要得到的是通道序列之间的顺序依赖关系, 即时空关系。由于SIC 任务高度依赖历史的 SIC 序列,并且需要考虑时序,本文把MLP替换为TCN 结构,如下图所示:

【心得体会】

这里的TCN相当于将MLP改成了稀疏的,和CBAM相比,TSAM计算量应该更小,在特定任务中可以尝试用TSAM替代原本的CBAM。

【Nature Communications】Seasonal Arctic sea ice forecasting with probabilistic deep learning 

【本文贡献】

提出了一个基于概率和深度学习的海洋冰预测系统 IceNet。

【网络结构】

总体上是一个U-Net结构:

 相关训练方案和参数:

【心得体会】

本文是一个将深度学习模型用于海洋领域的一个应用。

这篇关于【组会整理及心得】BiFormer、SICNet、IceNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249103

相关文章

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python变量与数据类型全解析(最新整理)

《Python变量与数据类型全解析(最新整理)》文章介绍Python变量作为数据载体,命名需遵循字母数字下划线规则,不可数字开头,大小写敏感,避免关键字,本文给大家介绍Python变量与数据类型全解析... 目录1、变量变量命名规范python数据类型1、基本数据类型数值类型(Number):布尔类型(bo

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)